Results 1 - 50 of 58 results
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
The secreted BMP antagonist ERFE is required for the development of a functional circulatory system in Xenopus. , Melchert J., Dev Biol. March 15, 2020; 459 (2): 138-148.
Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms. , McQueen C., Dev Biol. October 1, 2019; 454 (1): 74-84.
Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos. , Virgirinia RP., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.
Xenopus laevis FGF16 activates the expression of genes coding for the transcription factors Sp5 and Sp5l. , Elsy M., Int J Dev Biol. January 1, 2019; 63 (11-12): 631-639.
Candidate Heterotaxy Gene FGFR4 Is Essential for Patterning of the Left- Right Organizer in Xenopus. , Sempou E., Front Physiol. February 5, 2018; 9 1705.
The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling. , Wang C ., J Biol Chem. September 4, 2015; 290 (36): 21925-38.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites. , Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.
The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. , Iwasaki Y ., Development. October 1, 2014; 141 (19): 3740-51.
An essential role for LPA signalling in telencephalon development. , Geach TJ ., Development. February 1, 2014; 141 (4): 940-9.
Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein. , Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Microarray-based identification of Pitx3 targets during Xenopus embryogenesis. , Hooker L., Dev Dyn. September 1, 2012; 241 (9): 1487-505.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
Eps15R is required for bone morphogenetic protein signalling and differentially compartmentalizes with Smad proteins. , Callery EM ., Open Biol. April 1, 2012; 2 (4): 120060.
The forkhead transcription factor FoxB1 regulates the dorsal- ventral and anterior- posterior patterning of the ectoderm during early Xenopus embryogenesis. , Takebayashi-Suzuki K., Dev Biol. December 1, 2011; 360 (1): 11-29.
Fgf is required to regulate anterior- posterior patterning in the Xenopus lateral plate mesoderm. , Deimling SJ., Mech Dev. January 1, 2011; 128 (7-10): 327-41.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
The RNA-binding protein Mex3b has a fine-tuning system for mRNA regulation in early Xenopus development. , Takada H., Development. July 1, 2009; 136 (14): 2413-22.
Temporal and spatial expression of FGF ligands and receptors during Xenopus development. , Lea R., Dev Dyn. June 1, 2009; 238 (6): 1467-79.
Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. , Faas L., Dev Dyn. April 1, 2009; 238 (4): 835-52.
Characterisation of the fibroblast growth factor dependent transcriptome in early development. , Branney PA., PLoS One. January 1, 2009; 4 (3): e4951.
Extracellular regulation of developmental cell signaling by XtSulf1. , Freeman SD., Dev Biol. August 15, 2008; 320 (2): 436-45.
Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus. , Colas A., Dev Biol. August 15, 2008; 320 (2): 351-65.
Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. , Herr P., Development. May 1, 2008; 135 (10): 1813-22.
Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways. , Zhao H ., Development. April 1, 2008; 135 (7): 1283-93.
Hes6 is required for MyoD induction during gastrulation. , Murai K., Dev Biol. December 1, 2007; 312 (1): 61-76.
The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo. , Hou S., Dev Cell. August 1, 2007; 13 (2): 226-41.
CHD4/ Mi-2beta activity is required for the positioning of the mesoderm/ neuroectoderm boundary in Xenopus. , Linder B., Genes Dev. April 15, 2007; 21 (8): 973-83.
Xenopus ADAMTS1 negatively modulates FGF signaling independent of its metalloprotease activity. , Suga A., Dev Biol. July 1, 2006; 295 (1): 26-39.
Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. , Morrison GM., Development. May 1, 2006; 133 (10): 2011-22.
FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. , Fletcher RB., Development. May 1, 2006; 133 (9): 1703-14.
The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos. , Callery EM ., Dev Biol. February 15, 2005; 278 (2): 542-59.
Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. , Yamamoto A., Cell. January 28, 2005; 120 (2): 223-35.
Olfactory and lens placode formation is controlled by the hedgehog-interacting protein ( Xhip) in Xenopus. , Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.
Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. , Delaune E., Development. January 1, 2005; 132 (2): 299-310.
Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor. , Chung HA., Genes Cells. August 1, 2004; 9 (8): 749-61.
Xenopus marginal coil ( Xmc), a novel FGF inducible cytosolic coiled-coil protein regulating gastrulation movements. , Frazzetto G., Mech Dev. April 1, 2002; 113 (1): 3-14.
Early patterning of the prospective midbrain- hindbrain boundary by the HES-related gene XHR1 in Xenopus embryos. , Shinga J ., Mech Dev. December 1, 2001; 109 (2): 225-39.
Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. , Nutt SL., Genes Dev. May 1, 2001; 15 (9): 1152-66.
A role for GATA5 in Xenopus endoderm specification. , Weber H., Development. October 1, 2000; 127 (20): 4345-60.
HNF1(beta) is required for mesoderm induction in the Xenopus embryo. , Vignali R ., Development. April 1, 2000; 127 (7): 1455-65.
The fate of cells in the tailbud of Xenopus laevis. , Davis RL., Development. January 1, 2000; 127 (2): 255-67.
Opposite effects of FGF and BMP-4 on embryonic blood formation: roles of PV.1 and GATA-2. , Xu RH., Dev Biol. April 15, 1999; 208 (2): 352-61.
derrière: a TGF-beta family member required for posterior development in Xenopus. , Sun BI., Development. April 1, 1999; 126 (7): 1467-82.
Spatial response to fibroblast growth factor signalling in Xenopus embryos. , Christen B ., Development. January 1, 1999; 126 (1): 119-25.
Role of fibroblast growth factor during early midbrain development in Xenopus. , Riou JF ., Mech Dev. November 1, 1998; 78 (1-2): 3-15.
Two phases of Hox gene regulation during early Xenopus development. , Pownall ME ., Curr Biol. May 21, 1998; 8 (11): 673-6.
FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. , Christen B ., Dev Biol. December 15, 1997; 192 (2): 455-66.