Results 1 - 42 of 42 results
Function of chromatin modifier Hmgn1 during neural crest and craniofacial development. , Ihewulezi C., Genesis. October 1, 2021; 59 (10): e23447.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction. , Pegge J., Dev Biol. April 15, 2020; 460 (2): 108-114.
Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. , Kim Y., Epigenetics Chromatin. December 6, 2018; 11 (1): 72.
Gli2 is required for the induction and migration of Xenopus laevis neural crest. , Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.
The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/ β-catenin signaling. , Hong CS ., Dev Biol. October 1, 2018; 442 (1): 162-172.
MMP14 Regulates Cranial Neural Crest Epithelial-to-Mesenchymal Transition and Migration. , Garmon T., Dev Dyn. September 1, 2018; 247 (9): 1083-1092.
The ectodomain of cadherin-11 binds to erbB2 and stimulates Akt phosphorylation to promote cranial neural crest cell migration. , Mathavan K., PLoS One. November 30, 2017; 12 (11): e0188963.
PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation. , Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.
Controlled levels of canonical Wnt signaling are required for neural crest migration. , Maj E., Dev Biol. September 1, 2016; 417 (1): 77-90.
Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. , Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.
Hmga2 is required for neural crest cell specification in Xenopus laevis. , Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.
Snail2/ Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development. , Tien CL., Development. February 15, 2015; 142 (4): 722-31.
GSK3 and Polo-like kinase regulate ADAM13 function during cranial neural crest cell migration. , Abbruzzese G ., Mol Biol Cell. December 15, 2014; 25 (25): 4072-82.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
Transcription factor AP2 epsilon ( Tfap2e) regulates neural crest specification in Xenopus. , Hong CS ., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.
Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis. , Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.
A secreted splice variant of the Xenopus frizzled-4 receptor is a biphasic modulator of Wnt signalling. , Gorny AK., Cell Commun Signal. November 19, 2013; 11 89.
Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. , Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.
The LIM adaptor protein LMO4 is an essential regulator of neural crest development. , Ochoa SD., Dev Biol. January 15, 2012; 361 (2): 313-25.
Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway. , Takahashi C ., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.
Caldesmon regulates actin dynamics to influence cranial neural crest migration in Xenopus. , Nie S ., Mol Biol Cell. September 1, 2011; 22 (18): 3355-65.
The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1. , Lander R., J Cell Biol. July 11, 2011; 194 (1): 17-25.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.
Regulation of vertebrate embryogenesis by the exon junction complex core component Eif4a3. , Haremaki T ., Dev Dyn. July 1, 2010; 239 (7): 1977-87.
The F-box protein Cdc4/ Fbxw7 is a novel regulator of neural crest development in Xenopus laevis. , Almeida AD., Neural Dev. January 4, 2010; 5 1.
Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells. , Nie S ., Dev Biol. November 1, 2009; 335 (1): 132-42.
Myosin-X is required for cranial neural crest cell migration in Xenopus laevis. , Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.
Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. , Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.
Extracellular cleavage of cadherin-11 by ADAM metalloproteases is essential for Xenopus cranial neural crest cell migration. , McCusker C., Mol Biol Cell. January 1, 2009; 20 (1): 78-89.
Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm. , Hong CS ., Development. December 1, 2008; 135 (23): 3903-10.
A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification. , Bonano M., Dev Biol. November 1, 2008; 323 (1): 114-29.
Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. , Morokuma J ., Proc Natl Acad Sci U S A. October 28, 2008; 105 (43): 16608-13.
Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 368-80.
Hairy2- Id3 interactions play an essential role in Xenopus neural crest progenitor specification. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.
Kremen is required for neural crest induction in Xenopus and promotes LRP6-mediated Wnt signaling. , Hassler C., Development. December 1, 2007; 134 (23): 4255-63.
The small GTPase RhoV is an essential regulator of neural crest induction in Xenopus. , Guémar L., Dev Biol. October 1, 2007; 310 (1): 113-28.
Functional analysis of Sox8 during neural crest development in Xenopus. , O'Donnell M., Development. October 1, 2006; 133 (19): 3817-26.
Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. , Vernon AE., Development. September 1, 2006; 133 (17): 3359-70.
Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. , Aoki Y., Dev Biol. July 1, 2003; 259 (1): 19-33.
Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation. , Koyano-Nakagawa N., Development. October 1, 2000; 127 (19): 4203-16.