Results 1 - 31 of 31 results
Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates. , Bright AR., EMBO J. May 3, 2021; 40 (9): e104913.
Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis. , Huang X ., Genes (Basel). November 18, 2020; 11 (11):
Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. , Mukherjee S ., Elife. September 7, 2020; 9
Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms. , McQueen C., Dev Biol. October 1, 2019; 454 (1): 74-84.
Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. , Gentsch GE ., Nat Commun. September 19, 2019; 10 (1): 4269.
Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis. , Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.
The Xenopus animal cap transcriptome: building a mucociliary epithelium. , Angerilli A., Nucleic Acids Res. September 28, 2018; 46 (17): 8772-8787.
Tbx2 is required for the suppression of mesendoderm during early Xenopus development. , Teegala S ., Dev Dyn. July 1, 2018; 247 (7): 903-913.
Id genes are essential for early heart formation. , Cunningham TJ., Genes Dev. July 1, 2017; 31 (13): 1325-1338.
Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. , Watanabe M., Dev Biol. June 15, 2017; 426 (2): 301-324.
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. , Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. , Lim CY., Development. February 1, 2013; 140 (4): 853-60.
A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. , Szenker E., Cell Rep. June 28, 2012; 1 (6): 730-40.
Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. , Rana AA., PLoS Genet. November 17, 2006; 2 (11): e193.
Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development. , Dickinson K., Dev Dyn. February 1, 2006; 235 (2): 368-81.
Twisted gastrulation is required for forebrain specification and cooperates with Chordin to inhibit BMP signaling during X. tropicalis gastrulation. , Wills A ., Dev Biol. January 1, 2006; 289 (1): 166-78.
Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. , Houston DW ., Development. November 1, 2005; 132 (21): 4845-55.
Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. , Dupont S., Cell. April 8, 2005; 121 (1): 87-99.
The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos. , Callery EM ., Dev Biol. February 15, 2005; 278 (2): 542-59.
Xenopus aristaless-related homeobox ( xARX) gene product functions as both a transcriptional activator and repressor in forebrain development. , Seufert DW ., Dev Dyn. February 1, 2005; 232 (2): 313-24.
Induction of cardiomyocytes by GATA4 in Xenopus ectodermal explants. , Latinkić BV., Development. August 1, 2003; 130 (16): 3865-76.
Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. , Cordenonsi M., Cell. May 2, 2003; 113 (3): 301-14.
Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development. , Clements D., Mech Dev. March 1, 2003; 120 (3): 337-48.
The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus. , Kumano G ., Mech Dev. October 1, 2002; 118 (1-2): 45-56.
Cloning and characterization of the T-box gene Tbx6 in Xenopus laevis. , Uchiyama H., Dev Growth Differ. December 1, 2001; 43 (6): 657-69.
Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. , Zohn IE., Dev Biol. November 1, 2001; 239 (1): 118-31.
In synergy with noggin and follistatin, Xenopus nodal-related gene induces sonic hedgehog on notochord and floor plate. , Ito Y ., Biochem Biophys Res Commun. March 2, 2001; 281 (3): 714-9.
The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes. , Yoon JK., Dev Biol. June 15, 2000; 222 (2): 376-91.
derrière: a TGF-beta family member required for posterior development in Xenopus. , Sun BI., Development. April 1, 1999; 126 (7): 1467-82.
Xenopus eomesodermin is expressed in neural differentiation. , Ryan K., Mech Dev. July 1, 1998; 75 (1-2): 155-8.