Results 1 - 50 of 64 results
Rab7 is required for mesoderm patterning and gastrulation in Xenopus. , Kreis J., Biol Open. July 15, 2021; 10 (7):
Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis. , Lee H , Lee H ., Antioxidants (Basel). December 12, 2020; 9 (12):
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
Natural size variation among embryos leads to the corresponding scaling in gene expression. , Leibovich A., Dev Biol. June 15, 2020; 462 (2): 165-179.
Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos. , Lichtig H., Front Physiol. February 18, 2020; 11 75.
The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer. , Chang LS., Elife. January 14, 2020; 9
Shared evolutionary origin of vertebrate neural crest and cranial placodes. , Horie R., Nature. August 1, 2018; 560 (7717): 228-232.
Transcriptomics of dorso- ventral axis determination in Xenopus tropicalis. , Monteiro RS ., Dev Biol. July 15, 2018; 439 (2): 69-79.
RAPGEF5 Regulates Nuclear Translocation of β-Catenin. , Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. , Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.
interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration. , Tsujioka H., Nat Commun. September 8, 2017; 8 (1): 495.
RARβ2 is required for vertebrate somitogenesis. , Janesick A ., Development. June 1, 2017; 144 (11): 1997-2008.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification. , Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.
Active repression by RARγ signaling is required for vertebrate axial elongation. , Janesick A ., Development. June 1, 2014; 141 (11): 2260-70.
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling. , Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.
Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/ β-catenin signaling pathway. , Fujimi TJ ., Dev Biol. January 15, 2012; 361 (2): 220-31.
A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling. , Peyrot SM., Dev Biol. April 15, 2011; 352 (2): 254-66.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.
Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. , Luxardi G ., Development. February 1, 2010; 137 (3): 417-26.
Identification and gastrointestinal expression of Xenopus laevis FoxF2. , McLin VA ., Int J Dev Biol. January 1, 2010; 54 (5): 919-24.
Bestrophin genes are expressed in Xenopus development. , Onuma Y ., Biochem Biophys Res Commun. July 3, 2009; 384 (3): 290-5.
Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1. , Louie SH., PLoS One. January 1, 2009; 4 (2): e4310.
TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. , Ogata S ., Genes Dev. July 15, 2007; 21 (14): 1817-31.
Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. , Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.
A novel Cripto-related protein reveals an essential role for EGF-CFCs in Nodal signalling in Xenopus embryos. , Dorey K ., Dev Biol. April 15, 2006; 292 (2): 303-16.
Msx1 and Msx2 have shared essential functions in neural crest but may be dispensable in epidermis and axis formation in Xenopus. , Khadka D., Int J Dev Biol. January 1, 2006; 50 (5): 499-502.
XBtg2 is required for notochord differentiation during early Xenopus development. , Sugimoto K., Dev Growth Differ. September 1, 2005; 47 (7): 435-43.
Regional requirements for Dishevelled signaling during Xenopus gastrulation: separable effects on blastopore closure, mesendoderm internalization and archenteron formation. , Ewald AJ., Development. December 1, 2004; 131 (24): 6195-209.
Sequences downstream of the bHLH domain of the Xenopus hairy-related transcription factor-1 act as an extended dimerization domain that contributes to the selection of the partners. , Taelman V., Dev Biol. December 1, 2004; 276 (1): 47-63.
R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. , Kazanskaya O., Dev Cell. October 1, 2004; 7 (4): 525-34.
Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor. , Chung HA., Genes Cells. August 1, 2004; 9 (8): 749-61.
Selective degradation of excess Ldb1 by Rnf12/ RLIM confers proper Ldb1 expression levels and Xlim-1/ Ldb1 stoichiometry in Xenopus organizer functions. , Hiratani I., Development. September 1, 2003; 130 (17): 4161-75.
Activation of Gbetagamma signaling downstream of Wnt-11/ Xfz7 regulates Cdc42 activity during Xenopus gastrulation. , Penzo-Mendèz A., Dev Biol. May 15, 2003; 257 (2): 302-14.
Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development. , Dale L ., Mech Dev. December 1, 2002; 119 (2): 177-90.
Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway. , Choi SC., Dev Biol. April 15, 2002; 244 (2): 342-57.
Siamois functions in the early blastula to induce Spemann''s organiser. , Kodjabachian L ., Mech Dev. October 1, 2001; 108 (1-2): 71-9.
Tumorhead, a Xenopus gene product that inhibits neural differentiation through regulation of proliferation. , Wu CF ., Development. September 1, 2001; 128 (17): 3381-93.
Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. , Nutt SL., Genes Dev. May 1, 2001; 15 (9): 1152-66.
A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1. , Pera EM ., Mech Dev. September 1, 2000; 96 (2): 183-95.
Xenopus kielin: A dorsalizing factor containing multiple chordin-type repeats secreted from the embryonic midline. , Matsui M., Proc Natl Acad Sci U S A. May 9, 2000; 97 (10): 5291-6.
HNF1(beta) is required for mesoderm induction in the Xenopus embryo. , Vignali R ., Development. April 1, 2000; 127 (7): 1455-65.
The fate of cells in the tailbud of Xenopus laevis. , Davis RL., Development. January 1, 2000; 127 (2): 255-67.
The early expression control of Xepsin by nonaxial and planar posteriorizing signals in Xenopus epidermis. , Yamada K., Dev Biol. October 15, 1999; 214 (2): 318-30.
XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development. , Brannon M., Development. June 1, 1999; 126 (14): 3159-70.
derrière: a TGF-beta family member required for posterior development in Xenopus. , Sun BI., Development. April 1, 1999; 126 (7): 1467-82.
Misexpression of the catenin p120(ctn)1A perturbs Xenopus gastrulation but does not elicit Wnt-directed axis specification. , Paulson AF., Dev Biol. March 15, 1999; 207 (2): 350-63.
Regulation of BMP signaling by the BMP1/TLD-related metalloprotease, SpAN. , Wardle FC., Dev Biol. February 1, 1999; 206 (1): 63-72.
FGF is required for posterior neural patterning but not for neural induction. , Holowacz T., Dev Biol. January 15, 1999; 205 (2): 296-308.
The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation. , Kim SH., Development. December 1, 1998; 125 (23): 4681-90.