Results 1 - 50 of 50 results
Uncoupling the BMP receptor antagonist function from the WNT agonist function of R-spondin 2 using the inhibitory peptide dendrimer RWd. , Lee H , Lee H ., J Biol Chem. February 1, 2022; 298 (2): 101586.
Rab7 is required for mesoderm patterning and gastrulation in Xenopus. , Kreis J., Biol Open. July 15, 2021; 10 (7):
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis. , Lee H , Lee H ., Antioxidants (Basel). December 12, 2020; 9 (12):
TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. , Chen M., Elife. September 14, 2020; 9
The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer. , Chang LS., Elife. January 14, 2020; 9
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O., Development. January 1, 2020;
Non-acylated Wnts Can Promote Signaling. , Speer KF., Cell Rep. January 22, 2019; 26 (4): 875-883.e5.
Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis. , Ding Y ., Proc Natl Acad Sci U S A. September 25, 2018; 115 (39): E9135-E9144.
Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover. , Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.
The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling. , Wang C ., J Biol Chem. September 4, 2015; 290 (36): 21925-38.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
Development of the vertebrate tailbud. , Beck CW ., Wiley Interdiscip Rev Dev Biol. January 1, 2015; 4 (1): 33-44.
Temporal and spatial expression analysis of peripheral myelin protein 22 ( Pmp22) in developing Xenopus. , Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
A secreted splice variant of the Xenopus frizzled-4 receptor is a biphasic modulator of Wnt signalling. , Gorny AK., Cell Commun Signal. November 19, 2013; 11 89.
Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence. , Rodríguez-Seguel E., Genes Dev. September 1, 2013; 27 (17): 1932-46.
Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. , Pegoraro C., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.
β-Catenin-independent activation of TCF1/ LEF1 in human hematopoietic tumor cells through interaction with ATF2 transcription factors. , Grumolato L., PLoS Genet. January 1, 2013; 9 (8): e1003603.
Genomic targets of Brachyury (T) in differentiating mouse embryonic stem cells. , Evans AL., PLoS One. January 1, 2012; 7 (3): e33346.
Waif1/5T4 inhibits Wnt/ β-catenin signaling and activates noncanonical Wnt pathways by modifying LRP6 subcellular localization. , Kagermeier-Schenk B., Dev Cell. December 13, 2011; 21 (6): 1129-43.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.
EBF factors drive expression of multiple classes of target genes governing neuronal development. , Green YS., Neural Dev. April 30, 2011; 6 19.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. , Wang Y., J Biol Chem. April 2, 2010; 285 (14): 10890-901.
Myosin-X is critical for migratory ability of Xenopus cranial neural crest cells. , Nie S ., Dev Biol. November 1, 2009; 335 (1): 132-42.
Mad is required for wingless signaling in wing development and segment patterning in Drosophila. , Eivers E., PLoS One. August 6, 2009; 4 (8): e6543.
Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. , Faas L., Dev Dyn. April 1, 2009; 238 (4): 835-52.
The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development. , Kazanskaya O., Development. November 1, 2008; 135 (22): 3655-64.
Lrig3 regulates neural crest formation in Xenopus by modulating Fgf and Wnt signaling pathways. , Zhao H ., Development. April 1, 2008; 135 (7): 1283-93.
Kremen is required for neural crest induction in Xenopus and promotes LRP6-mediated Wnt signaling. , Hassler C., Development. December 1, 2007; 134 (23): 4255-63.
Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos. , Nagano T., Development. December 1, 2006; 133 (23): 4643-54.
Jun NH2-terminal kinase ( JNK) prevents nuclear beta-catenin accumulation and regulates axis formation in Xenopus embryos. , Liao G., Proc Natl Acad Sci U S A. October 31, 2006; 103 (44): 16313-8.
Tcf- and Vent-binding sites regulate neural-specific geminin expression in the gastrula embryo. , Taylor JJ., Dev Biol. January 15, 2006; 289 (2): 494-506.
Role of crescent in convergent extension movements by modulating Wnt signaling in early Xenopus embryogenesis. , Shibata M ., Mech Dev. December 1, 2005; 122 (12): 1322-39.
Xenopus frizzled-4S, a splicing variant of Xfz4 is a context-dependent activator and inhibitor of Wnt/beta-catenin signaling. , Swain RK., Cell Commun Signal. October 19, 2005; 3 12.
The doublesex-related gene, XDmrt4, is required for neurogenesis in the olfactory system. , Huang X ., Proc Natl Acad Sci U S A. August 9, 2005; 102 (32): 11349-54.
Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. , Yamamoto A., Cell. January 28, 2005; 120 (2): 223-35.
R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. , Kazanskaya O., Dev Cell. October 1, 2004; 7 (4): 525-34.
Specification of the otic placode depends on Sox9 function in Xenopus. , Saint-Germain N ., Development. April 1, 2004; 131 (8): 1755-63.
Flamingo, a cadherin-type receptor involved in the Drosophila planar polarity pathway, can block signaling via the canonical wnt pathway in Xenopus laevis. , Morgan R ., Int J Dev Biol. May 1, 2003; 47 (4): 245-52.
A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. , Kiecker C., Development. November 1, 2001; 128 (21): 4189-201.
Different activities of the frizzled-related proteins frzb2 and sizzled2 during Xenopus anteroposterior patterning. , Bradley L., Dev Biol. November 1, 2000; 227 (1): 118-32.
A developmental pathway controlling outgrowth of the Xenopus tail bud. , Beck CW ., Development. April 1, 1999; 126 (8): 1611-20.
Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth. , Beck CW ., Mech Dev. March 1, 1998; 72 (1-2): 41-52.
Neural crest induction by Xwnt7B in Xenopus. , Chang C ., Dev Biol. February 1, 1998; 194 (1): 129-34.
Xwnt-2b is a novel axis-inducing Xenopus Wnt, which is expressed in embryonic brain. , Landesman Y., Mech Dev. May 1, 1997; 63 (2): 199-209.
Ectodermal patterning in vertebrate embryos. , Sasai Y ., Dev Biol. February 1, 1997; 182 (1): 5-20.
Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos. , Wolda SL., Dev Biol. January 1, 1993; 155 (1): 46-57.