Results 1 - 50 of 64 results
Uncoupling the BMP receptor antagonist function from the WNT agonist function of R-spondin 2 using the inhibitory peptide dendrimer RWd. , Lee H , Lee H ., J Biol Chem. February 1, 2022; 298 (2): 101586.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. , Ossipova O., Development. September 11, 2020; 147 (17):
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O., Development. January 1, 2020;
Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. , Gentsch GE ., Nat Commun. September 19, 2019; 10 (1): 4269.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. , Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.
The Proto-oncogene Transcription Factor Ets1 Regulates Neural Crest Development through Histone Deacetylase 1 to Mediate Output of Bone Morphogenetic Protein Signaling. , Wang C ., J Biol Chem. September 4, 2015; 290 (36): 21925-38.
BMP signalling controls the construction of vertebrate mucociliary epithelia. , Cibois M., Development. July 1, 2015; 142 (13): 2352-63.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
Fezf2 promotes neuronal differentiation through localised activation of Wnt/ β-catenin signalling during forebrain development. , Zhang S ., Development. December 1, 2014; 141 (24): 4794-805.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.
Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos. , Kirmizitas A., Dev Biol. August 15, 2014; 392 (2): 358-67.
Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head. , Cases O., J Biol Chem. June 7, 2013; 288 (23): 16655-16670.
Scaling of dorsal- ventral patterning by embryo size-dependent degradation of Spemann''s organizer signals. , Inomata H ., Cell. June 6, 2013; 153 (6): 1296-311.
Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus. , Lim CY., Development. February 1, 2013; 140 (4): 853-60.
Self-regulation of the head-inducing properties of the Spemann organizer. , Inui M., Proc Natl Acad Sci U S A. September 18, 2012; 109 (38): 15354-9.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
Eps15R is required for bone morphogenetic protein signalling and differentially compartmentalizes with Smad proteins. , Callery EM ., Open Biol. April 1, 2012; 2 (4): 120060.
KDEL tagging: a method for generating dominant-negative inhibitors of the secretion of TGF-beta superfamily proteins. , Matsukawa S ., Int J Dev Biol. January 1, 2012; 56 (5): 351-6.
Bmp indicator mice reveal dynamic regulation of transcriptional response. , Javier AL., PLoS One. January 1, 2012; 7 (9): e42566.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.
Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. , Kozmikova I., PLoS One. February 3, 2011; 6 (2): e14650.
The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo. , Ho DM., Mech Dev. January 1, 2010; 127 (9-12): 485-95.
Mad is required for wingless signaling in wing development and segment patterning in Drosophila. , Eivers E., PLoS One. August 6, 2009; 4 (8): e6543.
Identification of a novel negative regulator of activin/ nodal signaling in mesendodermal formation of Xenopus embryos. , Cheong SM., J Biol Chem. June 19, 2009; 284 (25): 17052-60.
Characterisation of the fibroblast growth factor dependent transcriptome in early development. , Branney PA., PLoS One. January 1, 2009; 4 (3): e4951.
Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation. , Cha SW ., Development. November 1, 2008; 135 (22): 3719-29.
A dual requirement for Iroquois genes during Xenopus kidney development. , Alarcón P., Development. October 1, 2008; 135 (19): 3197-207.
Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. , Herr P., Development. May 1, 2008; 135 (10): 1813-22.
The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm. , Spagnoli FM ., Development. February 1, 2008; 135 (3): 451-61.
The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. , Sander V., EMBO J. June 20, 2007; 26 (12): 2955-65.
Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. , Rana AA., PLoS Genet. November 17, 2006; 2 (11): e193.
Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/ Smad1 pathway. , Alexandrova EM., Dev Biol. November 15, 2006; 299 (2): 398-410.
Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. , Vernon AE., Development. September 1, 2006; 133 (17): 3359-70.
Embryonic dorsal- ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases. , Lee HX ., Cell. January 13, 2006; 124 (1): 147-59.
Vg 1 is an essential signaling molecule in Xenopus development. , Birsoy B., Development. January 1, 2006; 133 (1): 15-20.
Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. , Reversade B ., Cell. December 16, 2005; 123 (6): 1147-60.
BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in Xenopus embryos. , Gamer LW., Dev Biol. September 1, 2005; 285 (1): 156-68.
An Oct-1 binding site mediates activation of the gata2 promoter by BMP signaling. , Oren T., Nucleic Acids Res. August 1, 2005; 33 (13): 4357-67.
Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. , Reversade B ., Development. August 1, 2005; 132 (15): 3381-92.
Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. , Dupont S., Cell. April 8, 2005; 121 (1): 87-99.
BMP4-dependent expression of Xenopus Grainyhead-like 1 is essential for epidermal differentiation. , Tao J., Development. March 1, 2005; 132 (5): 1021-34.
The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos. , Callery EM ., Dev Biol. February 15, 2005; 278 (2): 542-59.
Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. , Delaune E., Development. January 1, 2005; 132 (2): 299-310.
MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1. , Baldessari D., BMC Cell Biol. December 21, 2004; 5 (1): 48.
Poly(ADP-ribose) polymerase 1 interacts with OAZ and regulates BMP-target genes. , Ku MC., Biochem Biophys Res Commun. November 21, 2003; 311 (3): 702-7.
Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos. , Galli A., Development. October 1, 2003; 130 (20): 4919-29.
Evidence for antagonism of BMP-4 signals by MAP kinase during Xenopus axis determination and neural specification. , Sater AK ., Differentiation. September 1, 2003; 71 (7): 434-44.
XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. , Osada S., Development. May 1, 2003; 130 (9): 1783-94.