Results 1 - 50 of 222 results
Gli2 is required for the induction and migration of Xenopus laevis neural crest. , Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.
Tbx2 is required for the suppression of mesendoderm during early Xenopus development. , Teegala S ., Dev Dyn. July 1, 2018; 247 (7): 903-913.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
TRPP2-dependent Ca2+ signaling in dorso- lateral mesoderm is required for kidney field establishment in Xenopus. , Futel M., J Cell Sci. March 1, 2015; 128 (5): 888-99.
Development of the vertebrate tailbud. , Beck CW ., Wiley Interdiscip Rev Dev Biol. January 1, 2015; 4 (1): 33-44.
Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration. , Hayashi S., Dev Biol. December 1, 2014; 396 (1): 31-41.
Xhe2 is a member of the astacin family of metalloproteases that promotes Xenopus hatching. , Hong CS ., Genesis. December 1, 2014; 52 (12): 946-51.
Genome-wide view of TGFβ/ Foxh1 regulation of the early mesendoderm program. , Chiu WT ., Development. December 1, 2014; 141 (23): 4537-47.
Transcription factor AP2 epsilon ( Tfap2e) regulates neural crest specification in Xenopus. , Hong CS ., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.
Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis. , Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.
The Role of Sdf-1α signaling in Xenopus laevis somite morphogenesis. , Leal MA., Dev Dyn. April 1, 2014; 243 (4): 509-26.
The Prdm13 histone methyltransferase encoding gene is a Ptf1a- Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. , Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.
Mutually exclusive signaling signatures define the hepatic and pancreatic progenitor cell lineage divergence. , Rodríguez-Seguel E., Genes Dev. September 1, 2013; 27 (17): 1932-46.
MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. , Nimmo R., Dev Cell. August 12, 2013; 26 (3): 237-49.
The cytoskeletal protein Zyxin inhibits Shh signaling during the CNS patterning in Xenopus laevis through interaction with the transcription factor Gli1. , Martynova NY., Dev Biol. August 1, 2013; 380 (1): 37-48.
A comparative analysis of transcription factor expression during metazoan embryonic development. , Schep AN., PLoS One. June 11, 2013; 8 (6): e66826.
Unraveling new roles for serotonin receptor 2B in development: key findings from Xenopus. , Ori M ., Int J Dev Biol. January 1, 2013; 57 (9-10): 707-14.
Germes is involved in translocation of germ plasm during development of Xenopus primordial germ cells. , Yamaguchi T., Int J Dev Biol. January 1, 2013; 57 (5): 439-43.
Microarray-based identification of Pitx3 targets during Xenopus embryogenesis. , Hooker L., Dev Dyn. September 1, 2012; 241 (9): 1487-505.
High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos. , Koga M., Dev Growth Differ. September 1, 2012; 54 (7): 717-29.
Suppression of Bmp4 signaling by the zinc-finger repressors Osr1 and Osr2 is required for Wnt/ β-catenin-mediated lung specification in Xenopus. , Rankin SA , Rankin SA ., Development. August 1, 2012; 139 (16): 3010-20.
Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. , Sudou N ., Development. May 1, 2012; 139 (9): 1651-61.
A large scale screen for neural stem cell markers in Xenopus retina. , Parain K ., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.
Xaml1/ Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus. , Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.
Down''s-syndrome-related kinase Dyrk1A modulates the p120-catenin- Kaiso trajectory of the Wnt signaling pathway. , Hong JY., J Cell Sci. February 1, 2012; 125 (Pt 3): 561-9.
Xenopus Zic3 controls notochord and organizer development through suppression of the Wnt/ β-catenin signaling pathway. , Fujimi TJ ., Dev Biol. January 15, 2012; 361 (2): 220-31.
Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus. , Kawaguchi A., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.
Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway. , Takahashi C ., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.
Histone deacetylases are required for amphibian tail and limb regeneration but not development. , Taylor AJ., Mech Dev. January 1, 2012; 129 (9-12): 208-18.
PAPC and the Wnt5a/ Ror2 pathway control the invagination of the otic placode in Xenopus. , Jung B., BMC Dev Biol. June 10, 2011; 11 36.
Notch destabilises maternal beta-catenin and restricts dorsal- anterior development in Xenopus. , Acosta H., Development. June 1, 2011; 138 (12): 2567-79.
Dorsal- ventral patterning: Crescent is a dorsally secreted Frizzled-related protein that competitively inhibits Tolloid proteases. , Ploper D., Dev Biol. April 15, 2011; 352 (2): 317-28.
Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development. , Kaeser GE., Dev Dyn. April 1, 2011; 240 (4): 862-73.
A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. , Rankin SA , Rankin SA ., Dev Biol. March 15, 2011; 351 (2): 297-310.
Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease. , Dubaissi E ., Dis Model Mech. March 1, 2011; 4 (2): 179-92.
Activity of the RhoU/ Wrch1 GTPase is critical for cranial neural crest cell migration. , Fort P., Dev Biol. February 15, 2011; 350 (2): 451-63.
Induction of vertebrate regeneration by a transient sodium current. , Tseng AS ., J Neurosci. September 29, 2010; 30 (39): 13192-200.
Appl1 is essential for the survival of Xenopus pancreas, duodenum, and stomach progenitor cells. , Wen L., Dev Dyn. August 1, 2010; 239 (8): 2198-207.
FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation. , Roth M., Development. May 1, 2010; 137 (9): 1553-62.
Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development. , Saharinen P., Genes Dev. May 1, 2010; 24 (9): 875-80.
The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos. , Maczkowiak F., Dev Biol. April 15, 2010; 340 (2): 381-96.
Xenopus skip modulates Wnt/beta-catenin signaling and functions in neural crest induction. , Wang Y., J Biol Chem. April 2, 2010; 285 (14): 10890-901.
Identification and expression of ventrally associated leucine-zipper (VAL) in Xenopus embryo. , Saito Y., Int J Dev Biol. January 1, 2010; 54 (1): 203-8.
Developmental expression of Xenopus short-chain dehydrogenase/reductase 3. , Kam RK., Int J Dev Biol. January 1, 2010; 54 (8-9): 1355-60.
Genetic control of hematopoietic development in Xenopus and zebrafish. , Ciau-Uitz A ., Int J Dev Biol. January 1, 2010; 54 (6-7): 1139-49.
Notch activates Wnt-4 signalling to control medio- lateral patterning of the pronephros. , Naylor RW., Development. November 1, 2009; 136 (21): 3585-95.
Myosin-X is required for cranial neural crest cell migration in Xenopus laevis. , Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.
Mad is required for wingless signaling in wing development and segment patterning in Drosophila. , Eivers E., PLoS One. August 6, 2009; 4 (8): e6543.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
DeltaNp63 antagonizes p53 to regulate mesoderm induction in Xenopus laevis. , Barton CE., Dev Biol. May 1, 2009; 329 (1): 130-9.