Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6783) Expression Attributions Wiki
XB-ANAT-730

Papers associated with visual system (and tbx2)

Limit to papers also referencing gene:
Show all visual system papers
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8

Sort Newest To Oldest Sort Oldest To Newest

Dynamic and differential Oct-1 expression during early Xenopus embryogenesis: persistence of Oct-1 protein following down-regulation of the RNA., Veenstra GJ., Mech Dev. April 1, 1995; 50 (2-3): 103-17.                            


The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions., Pannese M., Development. March 1, 1995; 121 (3): 707-20.                      


Development of the interphotoreceptor matrix in Xenopus laevis., Lahiri D., J Morphol. March 1, 1995; 223 (3): 325-39.


Presynaptic excitability., Jackson MB., Int Rev Neurobiol. January 1, 1995; 38 201-51.


Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm., Godsave S., Dev Biol. December 1, 1994; 166 (2): 465-76.              


Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate., Turner DL., Genes Dev. June 15, 1994; 8 (12): 1434-47.        


Pagliaccio, a member of the Eph family of receptor tyrosine kinase genes, has localized expression in a subset of neural crest and neural tissues in Xenopus laevis embryos., Winning RS., Mech Dev. June 1, 1994; 46 (3): 219-29.              


Overexpression of a cellular retinoic acid binding protein (xCRABP) causes anteroposterior defects in developing Xenopus embryos., Dekker EJ., Development. April 1, 1994; 120 (4): 973-85.                


A novel GABA receptor on bipolar cell terminals in the tiger salamander retina., Lukasiewicz PD., J Neurosci. March 1, 1994; 14 (3 Pt 1): 1202-12.


Identification of cone classes in Xenopus retina by immunocytochemistry and staining with lectins and vital dyes., Zhang J., Vis Neurosci. January 1, 1994; 11 (6): 1185-92.


Xl-fli, the Xenopus homologue of the fli-1 gene, is expressed during embryogenesis in a restricted pattern evocative of neural crest cell distribution., Meyer D., Mech Dev. December 1, 1993; 44 (2-3): 109-21.                    


Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis., Moon RT., Development. September 1, 1993; 119 (1): 97-111.                  


The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones., Huang S., J Neurosci. August 1, 1993; 13 (8): 3193-210.


Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos., Coffman CR., Cell. May 21, 1993; 73 (4): 659-71.            


A Xenopus homebox gene defines dorsal-ventral domains in the developing brain., Saha MS., Development. May 1, 1993; 118 (1): 193-202.              


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          


Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene., von Dassow G., Genes Dev. March 1, 1993; 7 (3): 355-66.                


Angiotensin II and acetylcholine differentially activate mobilization of inositol phosphates in Xenopus laevis ovarian follicles., Lacy P., Pflugers Arch. February 1, 1992; 420 (2): 127-35.


XLPOU 1 and XLPOU 2, two novel POU domain genes expressed in the dorsoanterior region of Xenopus embryos., Agarwal VR., Dev Biol. October 1, 1991; 147 (2): 363-73.                  


Immunolocalization of N-acetylgalactosaminylphosphotransferase in the adult retina and subretinal space., Sweatt AJ., Exp Eye Res. October 1, 1991; 53 (4): 479-87.      


Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer., Servetnick M., Development. May 1, 1991; 112 (1): 177-88.                  


A retinoic acid receptor expressed in the early development of Xenopus laevis., Ellinger-Ziegelbauer H., Genes Dev. January 1, 1991; 5 (1): 94-104.              


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP., Development. November 1, 1990; 110 (3): 747-57.              


The morphological characterization and distribution of displaced ganglion cells in the anuran retina., Tóth P., Vis Neurosci. December 1, 1989; 3 (6): 551-61.


Bimodal and graded expression of the Xenopus homeobox gene Xhox3 during embryonic development., Ruiz i Altaba A., Development. May 1, 1989; 106 (1): 173-83.                  


Localization of c-myc expression during oogenesis and embryonic development in Xenopus laevis., Hourdry J., Development. December 1, 1988; 104 (4): 631-41.          


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence., Cooke J., Development. January 1, 1988; 102 (1): 85-99.          


Morphological classification of retinal ganglion cells in adult Xenopus laevis., Straznicky C., Anat Embryol (Berl). January 1, 1988; 178 (2): 143-53.


Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies., Takagi S., Dev Biol. July 1, 1987; 122 (1): 90-100.                    


Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos., Jacobson M., Dev Biol. August 1, 1986; 116 (2): 524-31.            


Application of reaction-diffusion models to cell patterning in Xenopus retina. Initiation of patterns and their biological stability., Shoaf SA., J Theor Biol. August 7, 1984; 109 (3): 299-329.


The development of retinal ganglion cells in a tetraploid strain of Xenopus laevis: a morphological study utilizing intracellular dye injection., Sakaguchi DS., J Comp Neurol. April 1, 1984; 224 (2): 231-51.


Two populations of rod photoreceptors in the retina of Xenopus laevis identified with 3H-fucose autoradiography., Hollyfield JG., Vision Res. January 1, 1984; 24 (8): 777-82.


Frog rod outer segment shedding in vitro: histologic and electrophysiologic observations., Heath AR., Invest Ophthalmol Vis Sci. March 1, 1983; 24 (3): 277-84.


Blue-sensitive rod input to bipolar and ganglion cells of the Xenopus retina., Yang CY., Vision Res. January 1, 1983; 23 (10): 933-41.


Evaluation of reflection interference contrast microscope images of living cells., Beck K., Microsc Acta. March 1, 1981; 84 (2): 153-78.


Preferential translation of mRNAs in an mRNA-dependent reticulocyte lysate., Asselbergs FA., Eur J Biochem. August 1, 1980; 109 (1): 159-65.


Ontogeny of the retina and optic nerve in Xenopus laevis. II. Ontogeny of the optic fiber pattern in the retina., Grant P., J Comp Neurol. February 15, 1980; 189 (4): 671-98.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8