A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. , Rankin SA ., Dev Biol. March 15, 2011; 351 (2): 297-310.
Large-scale mechanical properties of Xenopus embryonic epithelium. , Luu O., Proc Natl Acad Sci U S A. March 8, 2011; 108 (10): 4000-5.
Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes. , Pearl EJ ., Dev Biol. March 1, 2011; 351 (1): 135-45.
Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? , Lade AG., Dev Dyn. March 1, 2011; 240 (3): 486-500.
Rare copy number variations in congenital heart disease patients identify unique genes in left- right patterning. , Fakhro KA., Proc Natl Acad Sci U S A. February 15, 2011; 108 (7): 2915-20.
SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. , Wu MY., PLoS Biol. February 15, 2011; 9 (2): e1000593.
Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. , Spence JR., Nature. February 3, 2011; 470 (7332): 105-9.
PDGF-A controls mesoderm cell orientation and radial intercalation during Xenopus gastrulation. , Damm EW., Development. February 1, 2011; 138 (3): 565-75.
Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left- right asymmetry in Xenopus. , Marjoram L., Development. February 1, 2011; 138 (3): 475-85.
Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. , Wallingford JB ., Genes Dev. February 1, 2011; 25 (3): 201-13.
Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis. , Wang JH ., BMC Dev Biol. January 26, 2011; 11 75.
The kinase SGK1 in the endoderm and mesoderm promotes ectodermal survival by down-regulating components of the death-inducing signaling complex. , Endo T., Sci Signal. January 18, 2011; 4 (156): ra2.
Analysis of the expression of retinoic acid metabolising genes during Xenopus laevis organogenesis. , Lynch J ., Gene Expr Patterns. January 1, 2011; 11 (1-2): 112-7.
Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo. , Lim JW., Development. January 1, 2011; 138 (1): 33-44.
Nanos1 functions as a translational repressor in the Xenopus germline. , Lai F ., Mech Dev. January 1, 2011; 128 (1-2): 153-63.
Early cardiac morphogenesis defects caused by loss of embryonic macrophage function in Xenopus. , Smith SJ ., Mech Dev. January 1, 2011; 128 (5-6): 303-15.
Regulation of basal body and ciliary functions by Diversin. , Yasunaga T., Mech Dev. January 1, 2011; 128 (7-10): 376-86.
Temporal and spatial expression patterns of Cdc25 phosphatase isoforms during early Xenopus development. , Nakajo N., Int J Dev Biol. January 1, 2011; 55 (6): 627-32.
The RNA-binding protein Xp54nrb isolated from a Ca²+-dependent screen is expressed in neural structures during Xenopus laevis development. , Neant I ., Int J Dev Biol. January 1, 2011; 55 (10-12): 923-31.
Developmental expression patterns of candidate cofactors for vertebrate six family transcription factors. , Neilson KM ., Dev Dyn. December 1, 2010; 239 (12): 3446-66.
Inversin relays Frizzled-8 signals to promote proximal pronephros development. , Lienkamp S ., Proc Natl Acad Sci U S A. November 23, 2010; 107 (47): 20388-93.
A highly conserved Poc1 protein characterized in embryos of the hydrozoan Clytia hemisphaerica: localization and functional studies. , Fourrage C., PLoS One. November 16, 2010; 5 (11): e13994.
The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling. , Maghzal N., J Cell Biol. November 1, 2010; 191 (3): 645-59.
Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain. , Sopory S., Dev Biol. October 1, 2010; 346 (1): 102-12.
BrunoL1 regulates endoderm proliferation through translational enhancement of cyclin A2 mRNA. , Horb LD ., Dev Biol. September 15, 2010; 345 (2): 156-69.
Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo. , Tran HT., Proc Natl Acad Sci U S A. September 14, 2010; 107 (37): 16160-5.
Appl1 is essential for the survival of Xenopus pancreas, duodenum, and stomach progenitor cells. , Wen L., Dev Dyn. August 1, 2010; 239 (8): 2198-207.
The ascidian mouth opening is derived from the anterior neuropore: reassessing the mouth/ neural tube relationship in chordate evolution. , Veeman MT., Dev Biol. August 1, 2010; 344 (1): 138-49.
Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus. , White JT ., Development. June 1, 2010; 137 (11): 1863-73.
Evolutionary origin of the Otx2 enhancer for its expression in visceral endoderm. , Kurokawa D., Dev Biol. June 1, 2010; 342 (1): 110-20.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
The nodal inhibitor Coco is a critical target of leftward flow in Xenopus. , Schweickert A ., Curr Biol. April 27, 2010; 20 (8): 738-43.
Tel1/ ETV6 specifies blood stem cells through the agency of VEGF signaling. , Ciau-Uitz A ., Dev Cell. April 20, 2010; 18 (4): 569-78.
En2, Pax2/5 and Tcf-4 transcription factors cooperate in patterning the Xenopus brain. , Koenig SF., Dev Biol. April 15, 2010; 340 (2): 318-28.
The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. , Tran U ., Development. April 1, 2010; 137 (7): 1107-16.
Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut. , Chung MI ., Development. April 1, 2010; 137 (8): 1339-49.
Delta- Notch signaling is involved in the segregation of the three germ layers in Xenopus laevis. , Revinski DR., Dev Biol. March 15, 2010; 339 (2): 477-92.
Gp93, the Drosophila GRP94 ortholog, is required for gut epithelial homeostasis and nutrient assimilation-coupled growth control. , Maynard JC., Dev Biol. March 15, 2010; 339 (2): 295-306.
Planar cell polarity enables posterior localization of nodal cilia and left- right axis determination during mouse and Xenopus embryogenesis. , Antic D., PLoS One. February 2, 2010; 5 (2): e8999.
Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. , Luxardi G ., Development. February 1, 2010; 137 (3): 417-26.
Repression of zygotic gene expression in the Xenopus germline. , Venkatarama T., Development. February 1, 2010; 137 (4): 651-60.
Perturbation of Notch/ Suppressor of Hairless pathway disturbs migration of primordial germ cells in Xenopus embryo. , Morichika K., Dev Growth Differ. February 1, 2010; 52 (2): 235-44.
TMEPAI, a transmembrane TGF-beta-inducible protein, sequesters Smad proteins from active participation in TGF-beta signaling. , Watanabe Y., Mol Cell. January 15, 2010; 37 (1): 123-34.
Emergent morphogenesis: elastic mechanics of a self-deforming tissue. , Davidson LA ., J Biomech. January 5, 2010; 43 (1): 63-70.
Analysis of SDF-1/ CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis. , Takeuchi T., Mech Dev. January 1, 2010; 127 (1-2): 146-58.
Comparison of Lim1 expression in embryos of frogs with different modes of reproduction. , Venegas-Ferrín M., Int J Dev Biol. January 1, 2010; 54 (1): 195-202.
RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis. , Wilson JM., Gene Expr Patterns. January 1, 2010; 10 (1): 44-52.
FGFR3 expression in Xenopus laevis. , Pope AP., Gene Expr Patterns. January 1, 2010; 10 (2-3): 87-92.
Identification and gastrointestinal expression of Xenopus laevis FoxF2. , McLin VA ., Int J Dev Biol. January 1, 2010; 54 (5): 919-24.
Novel regulation of yolk utilization by thyroid hormone in embryos of the direct developing frog Eleutherodactylus coqui. , Singamsetty S., Evol Dev. January 1, 2010; 12 (5): 437-48.