Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2030) Expression Attributions Wiki
XB-ANAT-67

Papers associated with marginal zone (and sox15)

Limit to papers also referencing gene:
Show all marginal zone papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate., Neilson KM., Dev Biol. May 15, 2012; 365 (2): 363-75.                        


foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation., Yan B., Dev Biol. May 1, 2009; 329 (1): 80-95.              


Evolution of non-coding regulatory sequences involved in the developmental process: reflection of differential employment of paralogous genes as highlighted by Sox2 and group B1 Sox genes., Kamachi Y., Proc Jpn Acad Ser B Phys Biol Sci. January 1, 2009; 85 (2): 55-68.                  


The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo., Batut J., Proc Natl Acad Sci U S A. October 18, 2005; 102 (42): 15128-33.                


XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling., Nitta KR., Dev Biol. November 1, 2004; 275 (1): 258-67.                    


Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation., Chalmers AD., Dev Cell. February 1, 2002; 2 (2): 171-82.    


Neural induction takes a transcriptional twist., Bainter JJ., Dev Dyn. November 1, 2001; 222 (3): 315-27.  


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


SoxD: an essential mediator of induction of anterior neural tissues in Xenopus embryos., Mizuseki K., Neuron. July 1, 1998; 21 (1): 77-85.

???pagination.result.page??? 1