Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2030) Expression Attributions Wiki
XB-ANAT-67

Papers associated with marginal zone (and hes4)

Limit to papers also referencing gene:
Show all marginal zone papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The complete dorsal structure is formed from only the blastocoel roof of Xenopus blastula: insight into the gastrulation movement evolutionarily conserved among chordates., Sato Y., Dev Genes Evol. June 1, 2023; 233 (1): 1-12.                


Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage., Castro Colabianchi AM., Biol Open. February 25, 2021; 10 (2):                 


Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis., Huang X., Genes (Basel). November 18, 2020; 11 (11):                   


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                                


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.                      


Molecular and cellular characterization of urinary bladder-type aquaporin in Xenopus laevis., Shibata Y., Gen Comp Endocrinol. October 1, 2015; 222 11-9.                


A nutrient-sensitive restriction point is active during retinal progenitor cell differentiation., Love NK., Development. February 1, 2014; 141 (3): 697-706.                              


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.                              


An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis., Aguirre CE., PLoS One. January 1, 2013; 8 (1): e54777.                                      


Comparative Functional Analysis of ZFP36 Genes during Xenopus Development., Tréguer K., PLoS One. January 1, 2013; 8 (1): e54550.                          


Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis., El Yakoubi W., Stem Cells. December 1, 2012; 30 (12): 2784-95.              


Current perspectives of the signaling pathways directing neural crest induction., Stuhlmiller TJ., Cell Mol Life Sci. November 1, 2012; 69 (22): 3715-37.          


Early neural crest induction requires an initial inhibition of Wnt signals., Steventon B., Dev Biol. May 1, 2012; 365 (1): 196-207.              


A large scale screen for neural stem cell markers in Xenopus retina., Parain K., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.                                                    


Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network., de Crozé N., Proc Natl Acad Sci U S A. January 4, 2011; 108 (1): 155-60.        


BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus., Wills AE., Dev Biol. January 15, 2010; 337 (2): 335-50.                  


The role of miR-124a in early development of the Xenopus eye., Qiu R., Mech Dev. October 1, 2009; 126 (10): 804-16.          


Interaction between X-Delta-2 and Hox genes regulates segmentation and patterning of the anteroposterior axis., Peres JN., Mech Dev. April 1, 2006; 123 (4): 321-33.                          


Two modes of action by which Xenopus hairy2b establishes tissue demarcation in the Spemann-Mangold organizer., Murato Y., Int J Dev Biol. January 1, 2006; 50 (5): 463-71.


Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity., Kuriyama S., Development. January 1, 2006; 133 (1): 75-88.            


Role of crescent in convergent extension movements by modulating Wnt signaling in early Xenopus embryogenesis., Shibata M., Mech Dev. December 1, 2005; 122 (12): 1322-39.                    


Xenopus hairy2b specifies anterior prechordal mesoderm identity within Spemann's organizer., Yamaguti M., Dev Dyn. September 1, 2005; 234 (1): 102-13.          


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


The Notch-target gene hairy2a impedes the involution of notochordal cells by promoting floor plate fates in Xenopus embryos., López SL., Development. March 1, 2005; 132 (5): 1035-46.              


Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development., Takahashi N., Int J Dev Biol. January 1, 2005; 49 (8): 939-51.                                    


A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos., Stancheva I., Mol Cell. August 1, 2003; 12 (2): 425-35.                          


Expression pattern of a basic helix-loop-helix transcription factor Xhairy2b during Xenopus laevis development., Tsuji S., Dev Genes Evol. August 1, 2003; 213 (8): 407-11.


Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation., Koyano-Nakagawa N., Development. October 1, 2000; 127 (19): 4203-16.              


Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate., Turner DL., Genes Dev. June 15, 1994; 8 (12): 1434-47.        

???pagination.result.page??? 1