Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (350) Expression Attributions Wiki
XB-ANAT-1607

Papers associated with vegetal pole (and krt12.4)

Limit to papers also referencing gene:
Show all vegetal pole papers
Results 1 - 24 of 24 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


An essential role for LPA signalling in telencephalon development., Geach TJ., Development. February 1, 2014; 141 (4): 940-9.                            


Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene., Nicetto D., PLoS Genet. January 1, 2013; 9 (1): e1003188.                                                                


Pou-V factor Oct25 regulates early morphogenesis in Xenopus laevis., Julier A., Dev Growth Differ. September 1, 2012; 54 (7): 702-16.              


Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos., Lee SY., Differentiation. September 1, 2011; 82 (2): 99-107.                    


Prohibitin1 acts as a neural crest specifier in Xenopus development by repressing the transcription factor E2F1., Schneider M., Development. December 1, 2010; 137 (23): 4073-81.                        


Negative regulation of Activin/Nodal signaling by SRF during Xenopus gastrulation., Yun CH., Development. February 1, 2007; 134 (4): 769-77.              


Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus., Kuroda H., PLoS Biol. May 1, 2004; 2 (5): E92.                


Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest., Aybar MJ, Aybar MJ., Development. February 1, 2003; 130 (3): 483-94.                


Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis., Zohn IE., Dev Biol. November 1, 2001; 239 (1): 118-31.                    


RNA anchoring in the vegetal cortex of the Xenopus oocyte., Alarcón VB., J Cell Sci. May 1, 2001; 114 (Pt 9): 1731-41.          


A role for GATA5 in Xenopus endoderm specification., Weber H., Development. October 1, 2000; 127 (20): 4345-60.                  


The Xenopus homologue of Bicaudal-C is a localized maternal mRNA that can induce endoderm formation., Wessely O., Development. May 1, 2000; 127 (10): 2053-62.        


Neuralization of the Xenopus embryo by inhibition of p300/ CREB-binding protein function., Kato Y., J Neurosci. November 1, 1999; 19 (21): 9364-73.          


Xenopus GDF6, a new antagonist of noggin and a partner of BMPs., Chang C., Development. August 1, 1999; 126 (15): 3347-57.              


derrière: a TGF-beta family member required for posterior development in Xenopus., Sun BI., Development. April 1, 1999; 126 (7): 1467-82.                    


Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway., Larabell CA., J Cell Biol. March 10, 1997; 136 (5): 1123-36.                


TGF-beta signals and a pattern in Xenopus laevis endodermal development., Henry GL., Development. March 1, 1996; 122 (3): 1007-15.          


Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2., Forristall C., Development. January 1, 1995; 121 (1): 201-8.          


Localized expression of a Xenopus POU gene depends on cell-autonomous transcriptional activation and induction-dependent inactivation., Frank D., Development. June 1, 1992; 115 (2): 439-48.            


Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos., Torpey NP., J Cell Sci. January 1, 1992; 101 ( Pt 1) 151-60.                


[Concanavalin-binding proteins and cytokeratins in different tissues of the early amphibian gastrula (Rana temporaria, Xenopus laevis)]., Simirskiĭ VN., Ontogenez. January 1, 1991; 22 (3): 245-56.


Localized maternal mRNA related to transforming growth factor beta mRNA is concentrated in a cytokeratin-enriched fraction from Xenopus oocytes., Pondel MD., Proc Natl Acad Sci U S A. October 1, 1988; 85 (20): 7612-6.


Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction., Kintner CR., Development. March 1, 1987; 99 (3): 311-25.                  

Page(s): 1