Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (350) Expression Attributions Wiki
XB-ANAT-1607

Papers associated with vegetal pole (and gal.2)

Limit to papers also referencing gene:
Show all vegetal pole papers
Results 1 - 22 of 22 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes., Klein SL., PLoS One. April 4, 2013; 8 (4): e61845.                  


Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate., Neilson KM., Dev Biol. May 15, 2012; 365 (2): 363-75.                        


The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus., Bentaya S., Dev Biol. March 15, 2012; 363 (2): 362-72.                      


Prohibitin1 acts as a neural crest specifier in Xenopus development by repressing the transcription factor E2F1., Schneider M., Development. December 1, 2010; 137 (23): 4073-81.                        


Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network., Yan B., Dev Dyn. December 1, 2010; 239 (12): 3467-80.                  


Coordinating the timing of cardiac precursor development during gastrulation: a new role for Notch signaling., Miazga CM., Dev Biol. September 15, 2009; 333 (2): 285-96.            


Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus., Colas A., Dev Biol. August 15, 2008; 320 (2): 351-65.                  


The Gata5 target, TGIF2, defines the pancreatic region by modulating BMP signals within the endoderm., Spagnoli FM., Development. February 1, 2008; 135 (3): 451-61.                                                    


Xenopus Lefty requires proprotein cleavage but not N-linked glycosylation to inhibit nodal signaling., Westmoreland JJ., Dev Dyn. August 1, 2007; 236 (8): 2050-61.        


Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms., Pan FC., Mech Dev. August 1, 2007; 124 (7-8): 518-31.      


The competence of Xenopus blastomeres to produce neural and retinal progeny is repressed by two endo-mesoderm promoting pathways., Yan B., Dev Biol. May 1, 2007; 305 (1): 103-19.        


The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD., Seo S., Development. January 1, 2005; 132 (1): 105-15.              


Negative regulation of Smad2 by PIASy is required for proper Xenopus mesoderm formation., Daniels M., Development. November 1, 2004; 131 (22): 5613-26.                                


Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation., Murakami MS., Development. February 1, 2004; 131 (3): 571-80.      


PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development., Yang J., Development. December 1, 2003; 130 (23): 5569-78.            


VegT activation of the early zygotic gene Xnr5 requires lifting of Tcf-mediated repression in the Xenopus blastula., Hilton E., Mech Dev. October 1, 2003; 120 (10): 1127-38.


Effects of heterodimerization and proteolytic processing on Derrière and Nodal activity: implications for mesoderm induction in Xenopus., Eimon PM., Development. July 1, 2002; 129 (13): 3089-103.          


A study of mesoderm patterning through the analysis of the regulation of Xmyf-5 expression., Polli M., Development. June 1, 2002; 129 (12): 2917-27.        


Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning., Curran KL., Dev Biol. December 1, 2000; 228 (1): 41-56.          


Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos., Stancheva I., Genes Dev. February 1, 2000; 14 (3): 313-27.                    


A constitutively activated mutant of galphaq down-regulates EP-cadherin expression and decreases adhesion between ectodermal cells at gastrulation., Rizzoti K., Mech Dev. August 1, 1998; 76 (1-2): 19-31.                


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R., Development. November 1, 1993; 119 (3): 661-71.                  

Page(s): 1