Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14672) Expression Attributions Wiki
XB-ANAT-213

Papers associated with central nervous system

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs., Karsenti E., J Cell Biol. May 1, 1984; 98 (5): 1730-45.


Nerve disperses preexisting acetylcholine receptor clusters prior to induction of receptor accumulation in Xenopus muscle cultures., Kuromi H., Dev Biol. May 1, 1984; 103 (1): 53-61.


Choline acetyltransferase and cholinesterases in the developing Xenopus retina., Ma PM., J Neurochem. May 1, 1984; 42 (5): 1328-37.


Purification and characterization of Rana pipiens brain Thy-1 glycoprotein., Mansour MH., J Immunol. May 1, 1984; 132 (5): 2515-23.


Regeneration of transected dorsal root ganglion cell axons into the spinal cord in adult frogs (Xenopus laevis)., Katzenstein MB., Dev Biol. May 21, 1984; 300 (1): 188-91.


Expression of cholinesterase gene(s) in human brain tissues: translational evidence for multiple mRNA species., Soreq H., EMBO J. June 1, 1984; 3 (6): 1371-5.


Activity of commissural interneurons in spinal cord of Xenopus embryos., Soffe SR., J Neurophysiol. June 1, 1984; 51 (6): 1257-67.


The relation between soma position and fibre trajectory of neurons in the mesencephalic trigeminal nucleus of Xenopus laevis., Lowe DA., Proc R Soc Lond B Biol Sci. June 22, 1984; 221 (1225): 437-54.


Characterization of highly and moderately repetitive 500 bp Eco RI fragments from Xenopus laevis DNA., Hummel S., Nucleic Acids Res. June 25, 1984; 12 (12): 4921-38.


Stereotyped and variable growth of redirected Mauthner axons., Katz MJ., Dev Biol. July 1, 1984; 104 (1): 199-209.


Ontogeny of brain neurotensin in the rat: a radioimmunoassay study., Bissette G., J Neurochem. July 1, 1984; 43 (1): 283-7.


Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules., Fraser SE., Proc Natl Acad Sci U S A. July 1, 1984; 81 (13): 4222-6.


Regulation of the cell cycle during early Xenopus development., Newport JW., Cell. July 1, 1984; 37 (3): 731-42.


Splicing pathways of SV40 mRNAs in X. laevis oocytes differ in their requirements for snRNPs., Fradin A., Cell. July 1, 1984; 37 (3): 927-36.


Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA., Houamed KM., Nature. July 26, 1984; 310 (5975): 318-21.


Karyophobic proteins. A category of abundant soluble proteins which accumulate in the cytoplasm., Dabauvalle MC., Exp Cell Res. August 1, 1984; 153 (2): 308-26.


Comparison of mice and cell cultures for the isolation of tick-borne viruses., Nuttall PA., J Virol Methods. August 1, 1984; 9 (1): 27-33.


In vitro inhibition of tubulin assembly by a ribonucleoprotein complex associated with the free ribosome fraction isolated from Xenopus laevis oocytes: effect at the level of microtubule-associated proteins., Jessus C., Cell Differ. August 1, 1984; 14 (3): 179-87.


The actions of gamma-aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina., Stone S., J Physiol. August 1, 1984; 353 249-64.


Topography of the retinal ganglion cell layer of Xenopus., Graydon ML., J Anat. August 1, 1984; 139 ( Pt 1) 145-57.


The appearance and development of neurotransmitter sensitivity in Xenopus embryonic spinal neurones in vitro., Bixby JL., J Physiol. August 1, 1984; 353 143-55.


Slowly inactivating potassium channels induced in Xenopus oocytes by messenger ribonucleic acid from Torpedo brain., Gundersen CB., J Physiol. August 1, 1984; 353 231-48.


Inositol incorporation into phosphoinositides in retinal horizontal cells of Xenopus laevis: enhancement by acetylcholine, inhibition by glycine., Anderson RE., J Cell Biol. August 1, 1984; 99 (2): 686-91.


Antibodies against filamentous components in discrete cell types of the mouse retina., Dräger UC., J Neurosci. August 1, 1984; 4 (8): 2025-42.


Application of reaction-diffusion models to cell patterning in Xenopus retina. Initiation of patterns and their biological stability., Shoaf SA., J Theor Biol. August 7, 1984; 109 (3): 299-329.


Accumulation of the isolated carboxy-terminal domain of histone H1 in the Xenopus oocyte nucleus., Dingwall C., EMBO J. September 1, 1984; 3 (9): 1933-7.


Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming., Clarke JD., J Physiol. September 1, 1984; 354 345-62.


Developing descending neurons of the early Xenopus tail spinal cord in the caudal spinal cord of early Xenopus., Nordlander RH., J Comp Neurol. September 1, 1984; 228 (1): 117-28.


Regulation and possible role of serotonin N-acetyltransferase in the retina., Besharse JC., Fed Proc. September 1, 1984; 43 (12): 2704-8.


Histone RNA in amphibian oocytes visualized by in situ hybridization to methacrylate-embedded tissue sections., Jamrich M., EMBO J. September 1, 1984; 3 (9): 1939-43.


A library of monoclonal antibodies to Torpedo cholinergic synaptosomes., Kushner PD., J Neurochem. September 1, 1984; 43 (3): 775-86.


Interaction between rat brain microtubule associated proteins (MAPs) and free ribosomes from Xenopus oocyte: a possible mechanism for the in ovo distribution of MAPs., Jessus C., Cell Differ. October 1, 1984; 14 (4): 295-301.


Fibre order in the normal Xenopus optic tract, near the chiasma., Fawcett JW., J Embryol Exp Morphol. October 1, 1984; 83 1-14.


Variations in aldosterone and corticosterone plasma levels during metamorphosis in Xenopus laevis tadpoles., Jolivet Jaudet G., Gen Comp Endocrinol. October 1, 1984; 56 (1): 59-65.


CNS effects of mechanically produced spina bifida., Katz MJ., Dev Med Child Neurol. October 1, 1984; 26 (5): 617-31.


Transcription of a long, interspersed, highly repeated DNA element in Xenopus laevis., Kay BK., Dev Biol. October 1, 1984; 105 (2): 518-25.


Differential expression of the cellular src gene during vertebrate development., Schartl M., Dev Biol. October 1, 1984; 105 (2): 415-22.


Rapid embedding of tissues in Lowicryl K4M for immunoelectron microscopy., Altman LG., J Histochem Cytochem. November 1, 1984; 32 (11): 1217-23.


Projection patterns of lateral-line afferents in anurans: a comparative HRP study., Fritzsch B., J Comp Neurol. November 1, 1984; 229 (3): 451-69.


Evolutionary conservation of key structures and binding functions of neural cell adhesion molecules., Hoffman S., Proc Natl Acad Sci U S A. November 1, 1984; 81 (21): 6881-5.


Distribution and utilization of 5 S-RNA-binding proteins during the development of Xenopus oocytes., Johnson RM., Eur J Biochem. November 2, 1984; 144 (3): 503-8.


Processing and nucleo-cytoplasmic transport of histone gene transcripts., Georgiev O., Nucleic Acids Res. November 26, 1984; 12 (22): 8539-51.


On the basis of delayed depolarization and its role in repetitive firing of Rohon-Beard neurones in Xenopus tadpoles., Spitzer NC., J Physiol. December 1, 1984; 357 51-65.


Cerebellar efferents in the lizard Varanus exanthematicus. II. Projections of the cerebellar nuclei., Bangma GC., J Comp Neurol. December 1, 1984; 230 (2): 218-30.


Movement of a karyophilic protein through the nuclear pores of oocytes., Feldherr CM., J Cell Biol. December 1, 1984; 99 (6): 2216-22.


Studies on the cytoskeletal and nuclear architecture of Xenopus erythrocytes., Gambino J., J Cell Sci. December 1, 1984; 72 275-94.


Partial purification and functional expression of brain mRNAs coding for neurotransmitter receptors and voltage-operated channels., Sumikawa K., Proc Natl Acad Sci U S A. December 1, 1984; 81 (24): 7994-8.


Inhibitors of metalloendoprotease activity prevent K+-stimulated neurotransmitter release from the retina of Xenopus laevis., Frederick JM., J Neurosci. December 1, 1984; 4 (12): 3112-9.


Uptake of 3H-glycine in the outer plexiform layer of the retina of the toad, Bufo marinus., Kleinschmidt J., J Comp Neurol. December 10, 1984; 230 (3): 352-60.


Messenger RNA from rat brain induces noradrenaline and dopamine receptors in Xenopus oocytes., Sumikawa K., Proc R Soc Lond B Biol Sci. December 22, 1984; 223 (1231): 255-60.

???pagination.result.page??? ???pagination.result.prev??? 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ???pagination.result.next???