Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1722) Expression Attributions Wiki
XB-ANAT-106

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

PAPC mediates self/non-self-distinction during Snail1-dependent tissue separation., Luu O., J Cell Biol. March 16, 2015; 208 (6): 839-56.                    


The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation., Acosta H., Development. March 15, 2015; 142 (6): 1146-58.                                    


TRPP2-dependent Ca2+ signaling in dorso-lateral mesoderm is required for kidney field establishment in Xenopus., Futel M., J Cell Sci. March 1, 2015; 128 (5): 888-99.                      


Snail2/Slug cooperates with Polycomb repressive complex 2 (PRC2) to regulate neural crest development., Tien CL., Development. February 15, 2015; 142 (4): 722-31.                


A distinct mechanism of vascular lumen formation in Xenopus requires EGFL7., Charpentier MS., PLoS One. February 6, 2015; 10 (2): e0116086.              


Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver., Bougerol M., PLoS One. February 6, 2015; 10 (2): e0117370.                            


Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development., Yan B., Dev Dyn. February 1, 2015; 244 (2): 181-210.                          


Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during Xenopus laevis metamorphosis., Carew AC., Aquat Toxicol. February 1, 2015; 159 99-108.


A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis., Méreau A., Mol Cell Biol. February 1, 2015; 35 (4): 758-68.              


Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis., Nworu CU., J Cell Sci. January 15, 2015; 128 (2): 239-50.                                                  


Sox21 regulates the progression of neuronal differentiation in a dose-dependent manner., Whittington N., Dev Biol. January 15, 2015; 397 (2): 237-47.              


Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development., Buisson I., Dev Biol. January 15, 2015; 397 (2): 175-90.                            


Heat shock 70-kDa protein 5 (Hspa5) is essential for pronephros formation by mediating retinoic acid signaling., Shi W., J Biol Chem. January 2, 2015; 290 (1): 577-89.                        


Aminolevulinate synthase 2 mediates erythrocyte differentiation by regulating larval globin expression during Xenopus primary hematopoiesis., Ogawa-Otomo A., Biochem Biophys Res Commun. January 2, 2015; 456 (1): 476-81.            


Development of the vertebrate tailbud., Beck CW., Wiley Interdiscip Rev Dev Biol. January 1, 2015; 4 (1): 33-44.        


Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites., Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.                                          


Temporal and spatial expression analysis of peripheral myelin protein 22 (Pmp22) in developing Xenopus., Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.              


The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin., Epting D., Development. January 1, 2015; 142 (1): 174-84.                                            


Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis., Tsujioka H., PLoS One. January 1, 2015; 10 (3): e0111655.          


The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception., Nagy V., Cell Cycle. January 1, 2015; 14 (12): 1799-808.    


Comparative expression analysis of pfdn6a and tcp1α during Xenopus development., Marracci S., Int J Dev Biol. January 1, 2015; 59 (4-6): 235-40.                      


Developmental expression of the N-myc downstream regulated gene (Ndrg) family during Xenopus tropicalis embryogenesis., Zhong C., Int J Dev Biol. January 1, 2015; 59 (10-12): 511-7.                                


GSK3 and Polo-like kinase regulate ADAM13 function during cranial neural crest cell migration., Abbruzzese G., Mol Biol Cell. December 15, 2014; 25 (25): 4072-82.                                    


Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration., Hayashi S., Dev Biol. December 1, 2014; 396 (1): 31-41.                      


Xhe2 is a member of the astacin family of metalloproteases that promotes Xenopus hatching., Hong CS., Genesis. December 1, 2014; 52 (12): 946-51.            


Genome-wide view of TGFβ/Foxh1 regulation of the early mesendoderm program., Chiu WT., Development. December 1, 2014; 141 (23): 4537-47.                                  


Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development., Zhang S., Development. December 1, 2014; 141 (24): 4794-805.                            


Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character., Fish MB., Dev Biol. November 15, 2014; 395 (2): 317-330.                  


Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm., Bjerke MA., Dev Biol. October 15, 2014; 394 (2): 340-56.                        


Characterization of the Rx1-dependent transcriptome during early retinal development., Giudetti G., Dev Dyn. October 1, 2014; 243 (10): 1352-61.                                    


Down syndrome cell adhesion molecule (DSCAM) is important for early development in Xenopus tropicalis., Morales Diaz HD., Genesis. October 1, 2014; .        


The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling., Iwasaki Y., Development. October 1, 2014; 141 (19): 3740-51.                                          


Transcription factor AP2 epsilon (Tfap2e) regulates neural crest specification in Xenopus., Hong CS., Dev Neurobiol. September 1, 2014; 74 (9): 894-906.                    


Gtpbp2 is required for BMP signaling and mesoderm patterning in Xenopus embryos., Kirmizitas A., Dev Biol. August 15, 2014; 392 (2): 358-67.                                


NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling., Zhang Y., Dev Biol. August 1, 2014; 392 (1): 15-25.                              


Temperature-independent energy expenditure in early development of the African clawed frog Xenopus laevis., Nagano Y., Phys Biol. August 1, 2014; 11 (4): 046008.


Diverse functions of kindlin/fermitin proteins during embryonic development in Xenopus laevis., Rozario T., Mech Dev. August 1, 2014; 133 203-17.                


Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification., Yasuoka Y., Nat Commun. July 9, 2014; 5 4322.        


Maternal syntabulin is required for dorsal axis formation and is a germ plasm component in Xenopus., Colozza G., Differentiation. July 1, 2014; 88 (1): 17-26.                    


IRE1α knockdown rescues tunicamycin-induced developmental defects and apoptosis in Xenopus laevis., Yuan L., J Biomed Res. July 1, 2014; 28 (4): 275-81.        


Active repression by RARγ signaling is required for vertebrate axial elongation., Janesick A., Development. June 1, 2014; 141 (11): 2260-70.                    


Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos., Chatfield J., Development. June 1, 2014; 141 (12): 2429-40.              


An internally modulated, thermostable, pH-sensitive Cys loop receptor from the hydrothermal vent worm Alvinella pompejana., Juneja P., J Biol Chem. May 23, 2014; 289 (21): 15130-40.


Effects of tributyltin on metamorphosis and gonadal differentiation of Xenopus laevis at environmentally relevant concentrations., Shi H., Toxicol Ind Health. May 1, 2014; 30 (4): 297-303.


Distal expression of sprouty (spry) genes during Xenopus laevis limb development and regeneration., Wang YH., Gene Expr Patterns. May 1, 2014; 15 (1): 61-6.                                                  


Reagents for developmental regulation of Hedgehog signaling., Lewis C., Methods. April 1, 2014; 66 (3): 390-7.


Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis., Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.              


The Role of Sdf-1α signaling in Xenopus laevis somite morphogenesis., Leal MA., Dev Dyn. April 1, 2014; 243 (4): 509-26.                        


A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis., Dubaissi E., Development. April 1, 2014; 141 (7): 1514-25.                                

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 ???pagination.result.next???