Results 1 - 37 of 37 results
Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context. , Jahan I., Front Cell Neurosci. February 5, 2015; 9 26.
Sp8 regulates inner ear development. , Chung HA., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.
Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis. , Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.
Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. , Karpinski BA., Dis Model Mech. February 1, 2014; 7 (2): 245-57.
High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos. , Koga M., Dev Growth Differ. September 1, 2012; 54 (7): 717-29.
Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning. , Steventon B ., Dev Biol. July 1, 2012; 367 (1): 55-65.
Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus. , Kawaguchi A., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.
V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. , Vandenberg LN ., Dev Dyn. August 1, 2011; 240 (8): 1889-904.
PAPC and the Wnt5a/ Ror2 pathway control the invagination of the otic placode in Xenopus. , Jung B., BMC Dev Biol. June 10, 2011; 11 36.
Multiple enhancers located in a 1-Mb region upstream of POU3F4 promote expression during inner ear development and may be required for hearing. , Naranjo S., Hum Genet. October 1, 2010; 128 (4): 411-9.
The R109H variant of fascin-2, a developmentally regulated actin crosslinker in hair-cell stereocilia, underlies early-onset hearing loss of DBA/2J mice. , Shin JB., J Neurosci. July 21, 2010; 30 (29): 9683-94.
Evolution of non-coding regulatory sequences involved in the developmental process: reflection of differential employment of paralogous genes as highlighted by Sox2 and group B1 Sox genes. , Kamachi Y., Proc Jpn Acad Ser B Phys Biol Sci. January 1, 2009; 85 (2): 55-68.
Sox9 is required for invagination of the otic placode in mice. , Barrionuevo F., Dev Biol. May 1, 2008; 317 (1): 213-24.
Dynamic expression of FXYD6 in the inner ear suggests a role of the protein in endolymph homeostasis and neuronal activity. , Delprat B., Dev Dyn. September 1, 2007; 236 (9): 2534-40.
Characterization and function of the bHLH-O protein XHes2: insight into the mechanisms controlling retinal cell fate decision. , Sölter M ., Development. October 1, 2006; 133 (20): 4097-108.
The role of Paraxial Protocadherin in Xenopus otic placode development. , Hu RY., Biochem Biophys Res Commun. June 23, 2006; 345 (1): 239-47.
Induction and specification of cranial placodes. , Schlosser G ., Dev Biol. June 15, 2006; 294 (2): 303-51.
Molecular anatomy of placode development in Xenopus laevis. , Schlosser G ., Dev Biol. July 15, 2004; 271 (2): 439-66.
Specification of the otic placode depends on Sox9 function in Xenopus. , Saint-Germain N ., Development. April 1, 2004; 131 (8): 1755-63.
Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels. , Seebohm G ., J Physiol. October 15, 2003; 552 (Pt 2): 369-78.
Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos. , Hino J ., Dev Biol. August 1, 2003; 260 (1): 138-57.
Cloning and characterization of the Xenopus laevis p8 gene. , Igarashi T., Dev Growth Differ. December 1, 2001; 43 (6): 693-8.
Quantitative expression studies of aldolase A, B and C genes in developing embryos and adult tissues of Xenopus laevis. , Kajita E., Mech Dev. April 1, 2001; 102 (1-2): 283-7.
Use of large-scale expression cloning screens in the Xenopus laevis tadpole to identify gene function. , Grammer TC ., Dev Biol. December 15, 2000; 228 (2): 197-210.
The cytoskeletal effector xPAK1 is expressed during both ear and lateral line development in Xenopus. , Islam N ., Int J Dev Biol. February 1, 2000; 44 (2): 245-8.
Sequence and embryonic expression of deltaC in the zebrafish. , Smithers L., Mech Dev. January 1, 2000; 90 (1): 119-23.
A gene trap approach in Xenopus. , Bronchain OJ ., Curr Biol. October 21, 1999; 9 (20): 1195-8.
Divalent cations inhibit IsK/ KvLQT1 channels in excised membrane patches of strial marginal cells. , Shen Z., Hear Res. September 1, 1998; 123 (1-2): 157-67.
The Na+,K+-ATPase alpha subunit requires gastrulation in the Xenopus embryo. , Uochi T., Dev Growth Differ. October 1, 1997; 39 (5): 571-80.
Integrin alpha 6 expression is required for early nervous system development in Xenopus laevis. , Lallier TE., Development. August 1, 1996; 122 (8): 2539-54.
Expression patterns of Hoxb genes in the Xenopus embryo suggest roles in anteroposterior specification of the hindbrain and in dorsoventral patterning of the mesoderm. , Godsave S., Dev Biol. December 1, 1994; 166 (2): 465-76.
Overexpression of a cellular retinoic acid binding protein ( xCRABP) causes anteroposterior defects in developing Xenopus embryos. , Dekker EJ., Development. April 1, 1994; 120 (4): 973-85.
Xl- fli, the Xenopus homologue of the fli-1 gene, is expressed during embryogenesis in a restricted pattern evocative of neural crest cell distribution. , Meyer D., Mech Dev. December 1, 1993; 44 (2-3): 109-21.
A Xenopus homebox gene defines dorsal- ventral domains in the developing brain. , Saha MS ., Development. May 1, 1993; 118 (1): 193-202.
Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer. , Servetnick M ., Development. May 1, 1991; 112 (1): 177-88.
Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos. , Harvey RP ., Cell. June 3, 1988; 53 (5): 687-97.
The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence. , Cooke J., Development. January 1, 1988; 102 (1): 85-99.