Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1470) Expression Attributions Wiki
XB-ANAT-10

Papers associated with retina

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The role of subunit assembly in peripherin-2 targeting to rod photoreceptor disk membranes and retinitis pigmentosa., Loewen CJ., Mol Biol Cell. August 1, 2003; 14 (8): 3400-13.   


Coordination of BMP-3b and cerberus is required for head formation of Xenopus embryos., Hino J., Dev Biol. August 1, 2003; 260 (1): 138-57.   


Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration., Lin-Jones J., Invest Ophthalmol Vis Sci. August 1, 2003; 44 (8): 3614-21.


Expression of 5-HT2B and 5-HT2C receptor genes is associated with proliferative regions of Xenopus developing brain and eye., De Lucchini S., Brain Res Mol Brain Res. July 23, 2003; 115 (2): 196-201.   


Integrin-ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus., Marsden M., Curr Biol. July 15, 2003; 13 (14): 1182-91.   


Kainate-triggered currents in Xenopus oocytes injected with chick retinal membrane fragments: effect of guanine nucleotides., Burgos JS., Invest Ophthalmol Vis Sci. July 1, 2003; 44 (7): 3124-9.


Sox10 regulates the development of neural crest-derived melanocytes in Xenopus., Aoki Y., Dev Biol. July 1, 2003; 259 (1): 19-33.   


Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons., Gervasi C., J Comp Neurol. June 23, 2003; 461 (2): 262-75.   


Development of a rod photoreceptor mosaic revealed in transgenic zebrafish., Fadool JM., Dev Biol. June 15, 2003; 258 (2): 277-90.


Chloride currents in acutely isolated Xenopus retinal pigment epithelial cells., Hartzell HC., J Physiol. June 1, 2003; 549 (Pt 2): 453-69.


Permissive glycan support of photoreceptor outer segment assembly occurs via a non-metabolic mechanism., Wang X., Mol Vis. May 16, 2003; 9 701-9.


A novel Xenopus SWS2, P434 visual pigment: structure, cellular location, and spectral analyses., Darden AG., Mol Vis. May 16, 2003; 9 191-9.   


Expression of Sox3 throughout the developing central nervous system is dependent on the combined action of discrete, evolutionarily conserved regulatory elements., Brunelli S., Genesis. May 1, 2003; 36 (1): 12-24.   


Loss of maternal Smad5 in zebrafish embryos affects patterning and morphogenesis of optic primordia., Hammerschmidt M., Dev Dyn. May 1, 2003; 227 (1): 128-33.


Arrestin migrates in photoreceptors in response to light: a study of arrestin localization using an arrestin-GFP fusion protein in transgenic frogs., Peterson JJ., Exp Eye Res. May 1, 2003; 76 (5): 553-63.   


Co-localization of mesotocin and opsin immunoreactivity in the hypothalamic preoptic nucleus of Xenopus laevis., Alvarez-Viejo M., Brain Res. April 18, 2003; 969 (1-2): 36-43.   


Modulation of perch connexin35 hemi-channels by cyclic AMP requires a protein kinase A phosphorylation site., Mitropoulou G., J Neurosci Res. April 15, 2003; 72 (2): 147-57.


Normal chiasmatic routing of uncrossed projections from the ventrotemporal retina in albino Xenopus frogs., Grant S., J Comp Neurol. April 14, 2003; 458 (4): 425-39.


Expression of recombinant XVAX2 peptide-104 of Xenopus laevis and preparation of the antibody., Liu Y., Protein Pept Lett. April 1, 2003; 10 (2): 213-9.


Molecular control of Xenopus retinal circadian rhythms., Green CB., J Neuroendocrinol. April 1, 2003; 15 (4): 350-4.


A novel function for Hedgehog signalling in retinal pigment epithelium differentiation., Perron M., Development. April 1, 2003; 130 (8): 1565-77.   


XOtx5b and XOtx2 regulate photoreceptor and bipolar fates in the Xenopus retina., Viczian AS., Development. April 1, 2003; 130 (7): 1281-94.   


Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity., Take-uchi M., Development. March 1, 2003; 130 (5): 955-68.


Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA., Baggs JE., Curr Biol. February 4, 2003; 13 (3): 189-98.   


Xenopus neurula left-right asymmetry is respeficied by microinjecting TGF-beta5 protein., Mogi K., Int J Dev Biol. February 1, 2003; 47 (1): 15-29.   


Eye regeneration at the molecular age., Del Rio-Tsonis K., Dev Dyn. February 1, 2003; 226 (2): 211-24.   


Isolation and characterization of two teleost melanopsin genes and their differential expression within the inner retina and brain., Drivenes Ø., J Comp Neurol. January 27, 2003; 456 (1): 84-93.


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.   


The stability of the lens-specific Maf protein is regulated by fibroblast growth factor (FGF)/ERK signaling in lens fiber differentiation., Ochi H., J Biol Chem. January 3, 2003; 278 (1): 537-44.


Concentration dependence of inductive activity in the mixture of lens epithelium proteins., Zemchikhina VN., Tsitologiia. January 1, 2003; 45 (10): 1027-31.


In vitro induction and transplantation of eye during early Xenopus development., Sedohara A., Dev Growth Differ. January 1, 2003; 45 (5-6): 463-71.   


Life-cycle experiments of medaka fish aboard the international space station., Ijiri K., Adv Space Biol Med. January 1, 2003; 9 201-16.


Xrx1 controls proliferation and multipotency of retinal progenitors., Casarosa S., Mol Cell Neurosci. January 1, 2003; 22 (1): 25-36.


Differential distribution of Mel(1a) and Mel(1c) melatonin receptors in Xenopus laevis retina., Wiechmann AF., Exp Eye Res. January 1, 2003; 76 (1): 99-106.   


Xdtx1, a Xenopus Deltex homologue expressed in differentiating neurons and in photoreceptive organs., Andreazzoli M., Mech Dev. December 1, 2002; 119 Suppl 1 S247-51.   


Molecular cloning and expression analysis of dystroglycan during Xenopus laevis embryogenesis., Lunardi A., Mech Dev. December 1, 2002; 119 Suppl 1 S49-54.   


Lipofection strategy for the study of Xenopus retinal development., Ohnuma S., Methods. December 1, 2002; 28 (4): 411-9.


Transgenic approaches to retinal development and function in Xenopus laevis., Hutcheson DA., Methods. December 1, 2002; 28 (4): 402-10.


Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development., Dale L., Mech Dev. December 1, 2002; 119 (2): 177-90.   


Expression patterns of focal adhesion associated proteins in the developing retina., Li M., Dev Dyn. December 1, 2002; 225 (4): 544-53.   


Xenopus tropicalis transgenic lines and their use in the study of embryonic induction., Hirsch N., Dev Dyn. December 1, 2002; 225 (4): 522-35.   


Xenopus, the next generation: X. tropicalis genetics and genomics., Hirsch N., Dev Dyn. December 1, 2002; 225 (4): 422-33.   


Rod sensitivity during Xenopus development., Xiong WH., J Gen Physiol. December 1, 2002; 120 (6): 817-27.   


Induction and patterning of the telencephalon in Xenopus laevis., Lupo G., Development. December 1, 2002; 129 (23): 5421-36.   


Choline acetyltransferase immunoreactivity in the developing brain of Xenopus laevis., López JM., J Comp Neurol. November 25, 2002; 453 (4): 418-34.   


Zebrafish melanopsin: isolation, tissue localisation and phylogenetic position., Bellingham J., Brain Res Mol Brain Res. November 15, 2002; 107 (2): 128-36.


Inductive activity of retinal peptides., Khavinson VKh., Bull Exp Biol Med. November 1, 2002; 134 (5): 482-4.


XETOR regulates the size of the proneural domain during primary neurogenesis in Xenopus laevis., Cao Y., Mech Dev. November 1, 2002; 119 (1): 35-44.   


Expression of voltage-dependent potassium channels in the developing visual system of Xenopus laevis., Pollock NS., J Comp Neurol. October 28, 2002; 452 (4): 381-91.   


Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons., Engert F., Nature. October 3, 2002; 419 (6906): 470-5.

???pagination.result.page??? ???pagination.result.prev??? 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ???pagination.result.next???