Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (69) Expression Attributions Wiki
XB-ANAT-215

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Revealing mitf functions and visualizing allografted tumor metastasis in colorless and immunodeficient Xenopus tropicalis., Ran R., Commun Biol. March 5, 2024; 7 (1): 275.                                


[The lateral somitic frontier: The source of multipotent somitic cells in Xenopus]., Della Gaspera B., Med Sci (Paris). December 1, 2023; 39 (12): 967-974.


Identification of tumor-related genes via RNA sequencing of tumor tissues in Xenopus tropicalis., Kitamura K., Sci Rep. August 14, 2023; 13 (1): 13214.                


Histological changes of the skin during postembryonic development of the crested newt Triturus ivanbureschi (Urodela, Salamandridae)., Ajduković M., Ann Anat. August 1, 2023; 249 152097.            


The importance of antimicrobial peptides (AMPs) in amphibian skin defense., Rollins-Smith LA., Dev Comp Immunol. May 1, 2023; 142 104657.    


Inducible and tissue-specific cell labeling in Cre-ERT2 transgenic Xenopus lines., Lin TY., Dev Growth Differ. June 1, 2022; 64 (5): 243-253.        


Evolutionary conservation of leptin effects on wound healing in vertebrates: Implications for veterinary medicine., Reeve RE., Front Endocrinol (Lausanne). January 1, 2022; 13 938296.              


Fibroblast dedifferentiation as a determinant of successful regeneration., Lin TY., Dev Cell. May 17, 2021; 56 (10): 1541-1551.e6.                    


Review: Examining the Natural Role of Amphibian Antimicrobial Peptide Magainin., McMillan KAM., Molecules. November 20, 2020; 25 (22):           


Anatomical and histological analyses reveal that tail repair is coupled with regrowth in wild-caught, juvenile American alligators (Alligator mississippiensis)., Xu C., Sci Rep. November 18, 2020; 10 (1): 20122.                


Insights regarding skin regeneration in non-amniote vertebrates: Skin regeneration without scar formation and potential step-up to a higher level of regeneration., Abe G., Semin Cell Dev Biol. April 1, 2020; 100 109-121.            


Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs., Sonam S., Exp Eye Res. July 1, 2019; 184 107-125.                        


Peptides for Skin Protection and Healing in Amphibians., Demori I., Molecules. January 18, 2019; 24 (2):       


More Than Just a Bandage: Closing the Gap Between Injury and Appendage Regeneration., Kakebeen AD., Front Physiol. January 1, 2019; 10 81.      


Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation., Kho M., Front Physiol. January 1, 2019; 10 542.          


Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions., Grogan LF., Front Immunol. September 12, 2018; 9 2536.    


Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens., Varga JFA., Front Immunol. September 12, 2018; 9 3128.  


Skin regeneration of amphibians: A novel model for skin regeneration as adults., Yokoyama H., Dev Growth Differ. August 1, 2018; 60 (6): 316-325.      


Cells from subcutaneous tissues contribute to scarless skin regeneration in Xenopus laevis froglets., Otsuka-Yamaguchi R., Dev Dyn. August 1, 2017; 246 (8): 585-597.              


A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors., Bryant DM., Cell Rep. January 17, 2017; 18 (3): 762-776.                          


Collagenoma in an African Clawed Frog (Xenopus laevis)., Johnston JM., Comp Med. February 1, 2016; 66 (1): 21-4.


A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts., Tanaka HV., Nat Commun. January 12, 2016; 7 11069.        


A Novel Role for VICKZ Proteins in Maintaining Epithelial Integrity during Embryogenesis., Carmel MS., PLoS One. August 4, 2015; 10 (8): e0136408.              


The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines., Chang CH., J Dermatol Sci. August 1, 2014; 75 (2): 100-8.


Circadian genes, xBmal1 and xNocturnin, modulate the timing and differentiation of somites in Xenopus laevis., Curran KL., PLoS One. January 1, 2014; 9 (9): e108266.                            


Skin wound healing in different aged Xenopus laevis., Bertolotti E., J Morphol. August 1, 2013; 274 (8): 956-64.


Expression of the amelogenin gene in the skin of Xenopus tropicalis., Okada M., Zoolog Sci. March 1, 2013; 30 (3): 154-9.  


Thyrotropin-releasing hormone (TRH) promotes wound re-epithelialisation in frog and human skin., Meier NT., PLoS One. January 1, 2013; 8 (9): e73596.                


Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates., Seifert AW., PLoS One. January 1, 2012; 7 (4): e32875.                      


Prx-1 expression in Xenopus laevis scarless skin-wound healing and its resemblance to epimorphic regeneration., Yokoyama H., J Invest Dermatol. December 1, 2011; 131 (12): 2477-85.                        


Integument structure and function in juvenile Xenopus laevis with disrupted thyroid balance., Carvalho ES., Gen Comp Endocrinol. December 1, 2011; 174 (3): 301-8.        


The cellular basis for animal regeneration., Tanaka EM., Dev Cell. July 19, 2011; 21 (1): 172-85.  


Different requirement for Wnt/β-catenin signaling in limb regeneration of larval and adult Xenopus., Yokoyama H., PLoS One. January 1, 2011; 6 (7): e21721.                


Mutations in PYCR1 cause cutis laxa with progeroid features., Reversade B., Nat Genet. September 1, 2009; 41 (9): 1016-21.        


Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells., Morokuma J., Proc Natl Acad Sci U S A. October 28, 2008; 105 (43): 16608-13.                                  


Concealed weapons: erectile claws in African frogs., Blackburn DC., Biol Lett. August 23, 2008; 4 (4): 355-7.


Identification of genes associated with regenerative success of Xenopus laevis hindlimbs., Pearl EJ., BMC Dev Biol. June 23, 2008; 8 66.              


Initiation of limb regeneration: the critical steps for regenerative capacity., Yokoyama H., Dev Growth Differ. January 1, 2008; 50 (1): 13-22.          


Old wares and new: five decades of investigation of somitogenesis in Xenopus laevis., Sparrow DB., Adv Exp Med Biol. January 1, 2008; 638 73-94.


Amphibian metamorphosis., Brown DD., Dev Biol. June 1, 2007; 306 (1): 20-33.          


Cell behaviors associated with somite segmentation and rotation in Xenopus laevis., Afonin B., Dev Dyn. December 1, 2006; 235 (12): 3268-79.                


Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo., Aspengren S., Pigment Cell Res. April 1, 2006; 19 (2): 136-45.


Analysis of scleraxis and dermo-1 genes in a regenerating limb of Xenopus laevis., Satoh A., Dev Dyn. April 1, 2006; 235 (4): 1065-73.      


Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration., Suzuki M., Dev Biol. October 1, 2005; 286 (1): 361-75.              


Frog melanophores cultured on fluorescent microbeads: biomimic-based biosensing., Andersson TP., Biosens Bioelectron. July 15, 2005; 21 (1): 111-20.


Expression profile of the RNA-binding protein gene hermes during chicken embryonic development., Wilmore HP., Dev Dyn. July 1, 2005; 233 (3): 1045-51.          


Spatial and temporal expression patterns of Xenopus Nkx-2.3 gene in skin epidermis during metamorphosis., Ma CM., Gene Expr Patterns. November 1, 2004; 5 (1): 129-34.  


Helix stability confers salt resistance upon helical antimicrobial peptides., Park IY., J Biol Chem. April 2, 2004; 279 (14): 13896-901.


A Notch feeling of somite segmentation and beyond., Rida PC., Dev Biol. January 1, 2004; 265 (1): 2-22.


Platelet-derived growth factor signaling as a cue of the epithelial-mesenchymal interaction required for anuran skin metamorphosis., Utoh R., Dev Dyn. June 1, 2003; 227 (2): 157-69.              

???pagination.result.page??? 1 2 ???pagination.result.next???