Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6290) Expression Attributions Wiki
XB-ANAT-475

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A flow cytometric analysis of the embryonic origin of lymphocytes in diploid/triploid chimeric Xenopus laevis., Flajnik MF., Dev Biol. July 1, 1984; 104 (1): 247-54.


Studies on three kinds of lectins from Xenopus laevis skin., Nitta K., Experientia. July 15, 1984; 40 (7): 712-3.


Evidence for the participation of a melanin-concentrating hormone in physiological colour change in the eel., Gilham ID., J Endocrinol. August 1, 1984; 102 (2): 237-43.


The role of the glycoconjugates in the migration of anuran amphibian germ cells., Delbos M., J Embryol Exp Morphol. August 1, 1984; 82 119-29.


The comparative distribution of xenopsin- and neurotensin-like immunoreactivity in Xenopus laevis and rat tissues., Goedert M., Dev Biol. August 13, 1984; 308 (2): 273-80.


Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming., Clarke JD., J Physiol. September 1, 1984; 354 345-62.


Elicitation of weak immune response in larval and adult Xenopus laevis by allografted pituitary., Maéno M., Transplantation. September 1, 1984; 38 (3): 251-5.


Variations in aldosterone and corticosterone plasma levels during metamorphosis in Xenopus laevis tadpoles., Jolivet Jaudet G., Gen Comp Endocrinol. October 1, 1984; 56 (1): 59-65.


Cell type-specific activation of actin genes in the early amphibian embryo., Mohun TJ., Nature. October 25, 1984; 311 (5988): 716-21.


An unusual repetitive structure of caerulein mRNA from the skin of Xenopus laevis., Wakabayashi T., Gene. November 1, 1984; 31 (1-3): 295-9.


beta-Endorphins (beta-EP) in amphibians: higher beta-EP levels during regenerating stages of anuran life cycle and immunocytochemical localization of beta-EP in regeneration blastemata., Vethamany-Globus S., J Exp Zool. November 1, 1984; 232 (2): 259-67.


Region-specific regulation of the actin multi-gene family in early amphibian embryos., Mohun TJ., Philos Trans R Soc Lond B Biol Sci. December 4, 1984; 307 (1132): 337-42.


Analysis of embryonic induction by using cell lineage markers., Slack JM., Philos Trans R Soc Lond B Biol Sci. December 4, 1984; 307 (1132): 331-6.


Localization and induction in early development of Xenopus., Gerhart JC., Philos Trans R Soc Lond B Biol Sci. December 4, 1984; 307 (1132): 319-30.


[Inductive effect of the eye tissues of adult clawed toads on the gastrula ectoderm]., Golubeva ON., Ontogenez. January 1, 1985; 16 (4): 389-97.


The effect of calcitonin on the prechordal mesoderm, neural plate and neural crest of Xenopus embryos., Burgess AM., J Anat. January 1, 1985; 140 ( Pt 1) 49-55.


Alteration of the anterior-posterior embryonic axis: the pattern of gastrulation in macrocephalic frog embryos., Kao KR., Dev Biol. January 1, 1985; 107 (1): 239-51.


Fibronectin visualized by scanning electron microscopy immunocytochemistry on the substratum for cell migration in Xenopus laevis gastrulae., Nakatsuji N., Dev Biol. January 1, 1985; 107 (1): 264-8.


Ionic control of locomotion and shape of epithelial cells: I. Role of calcium influx., Mittal AK., Cell Motil. January 1, 1985; 5 (2): 123-36.


A new theory about somite formation in the chick., Bellairs R., Prog Clin Biol Res. January 1, 1985; 171 25-44.


Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos., Roberts A., J Neurosci Res. January 1, 1985; 13 (1-2): 23-38.


All components required for the eventual activation of muscle-specific actin genes are localized in the subequatorial region of an uncleaved amphibian egg., Gurdon JB., Proc Natl Acad Sci U S A. January 1, 1985; 82 (1): 139-43.


Biosynthesis of peptides in the skin of Xenopus laevis: isolation of novel peptides predicted from the sequence of cloned cDNAs., Richter K., Peptides. January 1, 1985; 6 Suppl 3 17-21.


A mass spectrometric assay for novel peptides: application to Xenopus laevis skin secretions., Gibson BW., Peptides. January 1, 1985; 6 Suppl 3 23-7.


Taxonomic and evolutionary significance of peptides in amphibian skin., Cei JM., Peptides. January 1, 1985; 6 Suppl 3 13-6.


Biochemical specificity of Xenopus notochord., Smith JC., Differentiation. January 1, 1985; 29 (2): 109-15.          


Analysis of the activity of DNA, RNA, and protein synthesis inhibitors on Xenopus embryo development., Courchesne CL., Teratog Carcinog Mutagen. January 1, 1985; 5 (3): 177-93.


[Nle4, D-Phe7]-alpha-MSH: a superpotent melanotropin with prolonged action on vertebrate chromatophores., Hadley ME., Comp Biochem Physiol A Comp Physiol. January 1, 1985; 81 (1): 1-6.


Motor hypoactivity induced by neurotensin and related peptides in mice., Meisenberg G., Pharmacol Biochem Behav. February 1, 1985; 22 (2): 189-93.


In vitro correlates of in vivo skin graft rejection in Xenopus., Lallone RL., Transplantation. February 1, 1985; 39 (2): 223-6.


Occurrence of a species-specific nuclear antigen in the germ line of Xenopus and its expression from paternal genes in hybrid frogs., Wedlich D., Dev Biol. March 1, 1985; 108 (1): 220-34.                


Complete nucleotide sequence of mRNA for caerulein precursor from Xenopus skin: the mRNA contains an unusual repetitive structure., Wakabayashi T., Nucleic Acids Res. March 25, 1985; 13 (6): 1817-28.


Effect of concanavalin A and vegetalizing factor on the outer and inner ectoderm layers of early gastrulae of Xenopus laevis after treatment with cytochalasin B., Grunz H., Cell Differ. April 1, 1985; 16 (2): 83-92.


Fine structure of the forelimb regenerate of the African clawed toad, Xenopus laevis., Furlong ST., Anat Rec. April 1, 1985; 211 (4): 444-9.


Regulation in the neural plate of Xenopus laevis demonstrated by genetic markers., Szaro B., J Exp Zool. April 1, 1985; 234 (1): 117-29.


Immunohistochemical distribution of the histone H1(0)/H5 variant in various tissues of adult Xenopus laevis., Moorman AF., Cell Differ. April 1, 1985; 16 (2): 109-17.


A partially histocompatible family of Xenopus borealis., Afifi A., Lab Anim Sci. April 1, 1985; 35 (2): 139-41.


Peanut lectin receptors in the early amphibian embryo: regional markers for the study of embryonic induction., Slack JM., Cell. May 1, 1985; 41 (1): 237-47.


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R., Cell. May 1, 1985; 41 (1): 177-90.                      


Immune responses of thymus/lymphocyte embryonic chimeras: studies on tolerance and major histocompatibility complex restriction in Xenopus., Flajnik MF., Eur J Immunol. June 1, 1985; 15 (6): 540-7.


Murine and human interleukin 2 can substitute for the thymus in immune responses to TNP-Ficoll in Xenopus laevis, the South African clawed toad., Ruben LN., Cell Immunol. June 1, 1985; 93 (1): 229-33.


Solid-phase synthesis of PYLa and isolation of its natural counterpart, PGLa [PYLa-(4-24)] from skin secretion of Xenopus laevis., Andreu D., Eur J Biochem. June 18, 1985; 149 (3): 531-5.


Activation of muscle-specific actin genes in Xenopus development by an induction between animal and vegetal cells of a blastula., Gurdon JB., Cell. July 1, 1985; 41 (3): 913-22.                      


Early specification for body position in mes-endodermal regions of an amphibian embryo., Cooke J., Cell Differ. July 1, 1985; 17 (1): 1-12.


Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos., Roberts A., J Neurophysiol. July 1, 1985; 54 (1): 1-10.


Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage., Cooke J., J Embryol Exp Morphol. August 1, 1985; 88 85-112.


Development of the lateral line system in Xenopus laevis. IV. Pattern formation in the supraorbital system., Winklbauer R., J Embryol Exp Morphol. August 1, 1985; 88 193-207.


Dynamics of the control of body pattern in the development of Xenopus laevis. III. Timing and pattern after u.v. irradiation of the egg and after excision of presumptive head endo-mesoderm., Cooke J., J Embryol Exp Morphol. August 1, 1985; 88 135-50.


Dynamics of the control of body pattern in the development of Xenopus laevis. II. Timing and pattern in the development of single blastomeres (presumptive lateral halves) isolated at the 2-cell stage., Cooke J., J Embryol Exp Morphol. August 1, 1985; 88 113-33.


Epidermal keratin gene expressed in embryos of Xenopus laevis., Jonas E., Proc Natl Acad Sci U S A. August 1, 1985; 82 (16): 5413-7.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???