Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (5838) Expression Attributions Wiki
XB-ANAT-2

Papers associated with ectoderm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

[The space-time distribution of the mRNA of the nuclear proteins c-myc and P-53 in the development of the clawed toad studied by hybridization in situ]., Luk'ianov SA., Ontogenez. January 1, 1991; 22 (1): 47-52.


Neural induction., Phillips CR., Methods Cell Biol. January 1, 1991; 36 329-46.


Development of the left-right axis in amphibians., Yost HJ., Ciba Found Symp. January 1, 1991; 162 165-76; discussion 176-81.


Regenerative capacity of retinal cells and the maintenance of their differentiation., Lopashov GV., Ciba Found Symp. January 1, 1991; 160 209-17; discussion 217-8.


Gene activation in the amphibian mesoderm., Hopwood ND., Dev Suppl. January 1, 1991; 1 95-104.


Microinjection of fluorescent tracers to study neural cell lineages., Wetts R., Development. January 1, 1991; Suppl 2 1-8.    


Xenopus c-raf proto-oncogene: cloning and expression during oogenesis and early development., Le Guellec R., Biol Cell. January 1, 1991; 72 (1-2): 39-45.


Localization of calmodulin in epidermis and skin glands: a comparative immunohistological investigation in different vertebrate species., Wollina U., Acta Histochem. January 1, 1991; 90 (2): 135-40.


Electrolyte transport through a cation-selective ion channel in large intestinal enterocytes of Xenopus laevis., Krattenmacher R., J Exp Biol. January 1, 1991; 155 275-90.


Location of a threonine residue in the alpha-subunit M2 transmembrane segment that determines the ion flow through the acetylcholine receptor channel., Villarroel A., Proc Biol Sci. January 22, 1991; 243 (1306): 69-74.


Protein kinase C and regulation of the local competence of Xenopus ectoderm., Otte AP., Science. February 1, 1991; 251 (4993): 570-3.


Single cell analysis of mesoderm formation in the Xenopus embryo., Godsave SF., Development. February 1, 1991; 111 (2): 523-30.


Expression of a novel cadherin (EP-cadherin) in unfertilized eggs and early Xenopus embryos., Ginsberg D., Development. February 1, 1991; 111 (2): 315-25.                


Xenopus Myf-5 marks early muscle cells and can activate muscle genes ectopically in early embryos., Hopwood ND., Development. February 1, 1991; 111 (2): 551-60.                


Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning., Drysdale TA., Development. February 1, 1991; 111 (2): 469-78.            


Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum., Davis CA., Development. February 1, 1991; 111 (2): 287-98.          


Retinoic acid modifies mesodermal patterning in early Xenopus embryos., Ruiz i Altaba A., Genes Dev. February 1, 1991; 5 (2): 175-87.


Purification and partial characterization of Xenopus laevis tenascin from the XTC cell line., Riou JF., FEBS Lett. February 25, 1991; 279 (2): 346-50.


Differential expression of two cadherins in Xenopus laevis., Angres B., Development. March 1, 1991; 111 (3): 829-44.                    


Bone morphogenetic protein 4 (BMP-4), a member of the TGF-beta family, in early embryos of Xenopus laevis: analysis of mesoderm inducing activity., Köster M., Mech Dev. March 1, 1991; 33 (3): 191-9.


Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers., Matsuzaki K., Biochim Biophys Acta. March 18, 1991; 1063 (1): 162-70.


Transgenic Xenopus laevis tadpoles: a transient in vivo model system for the manipulation of lens function and lens development., Brakenhoff RH., Nucleic Acids Res. March 25, 1991; 19 (6): 1279-84.


Progressively restricted expression of a new homeobox-containing gene during Xenopus laevis embryogenesis., Su MW., Development. April 1, 1991; 111 (4): 1179-87.          


Molecular cloning and characterization of a new member of the gap junction gene family, connexin-31., Hoh JH., J Biol Chem. April 5, 1991; 266 (10): 6524-31.


Segregation of NMDA and non-NMDA receptors at separate synaptic contacts: evidence from spontaneous EPSPs in Xenopus embryo spinal neurons., Sillar KT., Dev Biol. April 5, 1991; 545 (1-2): 24-32.


Interaction between tetraethylammonium and amino acid residues in the pore of cloned voltage-dependent potassium channels., Kavanaugh MP., J Biol Chem. April 25, 1991; 266 (12): 7583-7.


Separation of an anterior inducing activity from development of dorsal axial mesoderm in large-headed frog embryos., Elinson RP., Dev Biol. May 1, 1991; 145 (1): 91-8.


[Immunolocalization of fodrin in the retina of vertebrates], Rungger E., Klin Monbl Augenheilkd. May 1, 1991; 198 (5): 408-10.


cDNA cloning and developmental expression of fibroblast growth factor receptors from Xenopus laevis., Friesel R., Mol Cell Biol. May 1, 1991; 11 (5): 2481-8.


Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells., Mitani S., Development. May 1, 1991; 112 (1): 21-31.


Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer., Servetnick M., Development. May 1, 1991; 112 (1): 177-88.                  


Pre-existent pattern in Xenopus animal pole cells revealed by induction with activin., Sokol S., Nature. May 30, 1991; 351 (6325): 409-11.


Morphogenesis of adrenergic cells in a frog parasympathetic ganglion., Heathcote RD., J Comp Neurol. June 1, 1991; 308 (1): 139-48.


Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost., Clarke JD., Development. June 1, 1991; 112 (2): 499-516.                        


Prolactin inhibits both thyroid hormone-induced morphogenesis and cell death in cultured amphibian larval tissues., Tata JR., Dev Biol. July 1, 1991; 146 (1): 72-80.


Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy., Bechinger B., J Biomol NMR. July 1, 1991; 1 (2): 167-73.


Localized and inducible expression of Xenopus-posterior (Xpo), a novel gene active in early frog embryos, encoding a protein with a 'CCHC' finger domain., Sato SM., Development. July 1, 1991; 112 (3): 747-53.            


Xenopus embryos contain a somite-specific, MyoD-like protein that binds to a promoter site required for muscle actin expression., Taylor MV., Genes Dev. July 1, 1991; 5 (7): 1149-60.


Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis., Kawahara A., Development. August 1, 1991; 112 (4): 933-43.            


Autonomous differentiation of dorsal axial structures from an animal cap cleavage stage blastomere in Xenopus., Gallagher BC., Development. August 1, 1991; 112 (4): 1103-14.


The switch from larval to adult globin gene expression in Xenopus laevis is mediated by erythroid cells from distinct compartments., Weber R., Development. August 1, 1991; 112 (4): 1021-9.              


Labeling of developing vascular endothelium after injections of rhodamine-dextran into blastomeres of Xenopus laevis., Rovainen CM., J Exp Zool. August 1, 1991; 259 (2): 209-21.


Distribution and expression of two interactive extracellular matrix proteins, cytotactin and cytotactin-binding proteoglycan, during development of Xenopus laevis. II. Metamorphosis., Williamson DA., J Morphol. August 1, 1991; 209 (2): 203-13.


Distribution and expression of two interactive extracellular matrix proteins, cytotactin and cytotactin-binding proteoglycan, during development of Xenopus laevis. I. Embryonic development., Williamson DA., J Morphol. August 1, 1991; 209 (2): 189-202.


Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos., Ruiz i Altaba A., Development. August 1, 1991; 112 (4): 945-58.                


Retinoic acid can mimic endogenous signals involved in transformation of the Xenopus nervous system., Sharpe CR., Neuron. August 1, 1991; 7 (2): 239-47.


Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis., Sive HL., Genes Dev. August 1, 1991; 5 (8): 1321-32.


A novel endopeptidase from Xenopus that recognizes alpha-helical secondary structure., Resnick NM., Cell. August 9, 1991; 66 (3): 541-54.


Homeogenetic neural induction in Xenopus., Servetnick M., Dev Biol. September 1, 1991; 147 (1): 73-82.      


Transcription factor AP-2 is tissue-specific in Xenopus and is closely related or identical to keratin transcription factor 1 (KTF-1)., Snape AM., Development. September 1, 1991; 113 (1): 283-93.

???pagination.result.page??? ???pagination.result.prev??? 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ???pagination.result.next???