Results 1 - 50 of 335 results
Mink1 regulates spemann organizer cell fate in the xenopus gastrula via Hmga2. , Colleluori V., Dev Biol. March 1, 2023; 495 42-53.
Microsurgical Methods to Make the Keller Sandwich Explant and the Dorsal Isolate. , Davidson LA ., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097386.
GJA1 depletion causes ciliary defects by affecting Rab11 trafficking to the ciliary base. , Jang DG., Elife. August 25, 2022; 11
PCD Genes-From Patients to Model Organisms and Back to Humans. , Niziolek M., Int J Mol Sci. February 3, 2022; 23 (3):
Discovery of a genetic module essential for assigning left- right asymmetry in humans and ancestral vertebrates. , Szenker-Ravi E., Nat Genet. January 1, 2022; 54 (1): 62-72.
Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation. , Gur M., Front Cell Dev Biol. January 1, 2022; 10 857230.
dmrt2 and myf5 Link Early Somitogenesis to Left- Right Axis Determination in Xenopus laevis. , Tingler M., Front Cell Dev Biol. January 1, 2022; 10 858272.
Bicc1 and Dicer regulate left- right patterning through post-transcriptional control of the Nodal inhibitor Dand5. , Maerker M., Nat Commun. September 16, 2021; 12 (1): 5482.
Rab7 is required for mesoderm patterning and gastrulation in Xenopus. , Kreis J., Biol Open. July 15, 2021; 10 (7):
Altering metabolite distribution at Xenopus cleavage stages affects left- right gene expression asymmetries. , Onjiko RM., Genesis. June 1, 2021; 59 (5-6): e23418.
RNA demethylation by FTO stabilizes the FOXJ1 mRNA for proper motile ciliogenesis. , Kim H ., Dev Cell. April 19, 2021; 56 (8): 1118-1130.e6.
Furry is required for cell movements during gastrulation and functionally interacts with NDR1. , Cervino AS., Sci Rep. March 23, 2021; 11 (1): 6607.
Nucleoporin NUP205 plays a critical role in cilia and congenital disease. , Marquez J ., Dev Biol. January 1, 2021; 469 46-53.
Periodic albinism of a widely used albino mutant of Xenopus laevis caused by deletion of two exons in the Hermansky-Pudlak syndrome type 4 gene. , Fukuzawa T ., Genes Cells. January 1, 2021; 26 (1): 31-39.
The FOXJ1 target Cfap206 is required for sperm motility, mucociliary clearance of the airways and brain development. , Beckers A., Development. June 15, 2020; 147 (21):
CFAP43 modulates ciliary beating in mouse and Xenopus. , Rachev E., Dev Biol. March 15, 2020; 459 (2): 109-125.
Diversity of left- right symmetry breaking strategy in animals. , Hamada H., F1000Res. February 19, 2020; 9
Alkylglycerol monooxygenase, a heterotaxy candidate gene, regulates left- right patterning via Wnt signaling. , Duncan AR., Dev Biol. December 1, 2019; 456 (1): 1-7.
Histone H2B monoubiquitination regulates heart development via epigenetic control of cilia motility. , Robson A., Proc Natl Acad Sci U S A. July 9, 2019; 116 (28): 14049-14054.
Mechanical strain, novel genes and evolutionary insights: news from the frog left- right organizer. , Blum M ., Curr Opin Genet Dev. June 1, 2019; 56 8-14.
A dual function of FGF signaling in Xenopus left- right axis formation. , Schneider I., Development. May 10, 2019; 146 (9):
The extraordinary biology and development of marsupial frogs (Hemiphractidae) in comparison with fish, mammals, birds, amphibians and other animals. , Del Pino EM ., Mech Dev. December 1, 2018; 154 2-11.
Characterization of potential TRPP2 regulating proteins in early Xenopus embryos. , Futel M., J Cell Biochem. December 1, 2018; 119 (12): 10338-10350.
WDR5 regulates left- right patterning via chromatin-dependent and -independent functions. , Kulkarni SS ., Development. November 28, 2018; 145 (23):
Katanin-like protein Katnal2 is required for ciliogenesis and brain development in Xenopus embryos. , Willsey HR ., Dev Biol. October 15, 2018; 442 (2): 276-287.
The evolutionary conserved FOXJ1 target gene Fam183b is essential for motile cilia in Xenopus but dispensable for ciliary function in mice. , Beckers A., Sci Rep. October 2, 2018; 8 (1): 14678.
Mechanical Strain Determines Cilia Length, Motility, and Planar Position in the Left- Right Organizer. , Chien YH., Dev Cell. May 7, 2018; 45 (3): 316-330.e4.
An Early Function of Polycystin-2 for Left- Right Organizer Induction in Xenopus. , Vick P ., iScience. April 27, 2018; 2 76-85.
Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation. , Shook DR ., Elife. March 13, 2018; 7
A Conserved Role of the Unconventional Myosin 1d in Laterality Determination. , Tingler M., Curr Biol. March 5, 2018; 28 (5): 810-816.e3.
Candidate Heterotaxy Gene FGFR4 Is Essential for Patterning of the Left- Right Organizer in Xenopus. , Sempou E., Front Physiol. February 5, 2018; 9 1705.
RAPGEF5 Regulates Nuclear Translocation of β-Catenin. , Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.
Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis. , Walentek P ., Methods Mol Biol. January 1, 2018; 1865 251-263.
Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. , Sigg MA., Dev Cell. December 18, 2017; 43 (6): 744-762.e11.
A Nonredundant Role for the TRPM6 Channel in Neural Tube Closure. , Komiya Y., Sci Rep. November 15, 2017; 7 (1): 15623.
Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula. , Wen JW., Elife. August 10, 2017; 6
The phosphatase Pgam5 antagonizes Wnt/ β-Catenin signaling in embryonic anterior- posterior axis patterning. , Rauschenberger V., Development. June 15, 2017; 144 (12): 2234-2247.
La-related protein 6 controls ciliated cell differentiation. , Manojlovic Z., Cilia. March 23, 2017; 6 4.
Leftward Flow Determines Laterality in Conjoined Twins. , Tisler M., Curr Biol. February 20, 2017; 27 (4): 543-548.
Exosomal trafficking in Xenopus development. , Danilchik M ., Genesis. January 1, 2017; 55 (1-2):
What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia. , Walentek P ., Genesis. January 1, 2017; 55 (1-2):
CFAP157 is a murine downstream effector of FOXJ1 that is specifically required for flagellum morphogenesis and sperm motility. , Weidemann M., Development. December 15, 2016; 143 (24): 4736-4748.
The histone methyltransferase Setd7 promotes pancreatic progenitor identity. , Kofent J., Development. October 1, 2016; 143 (19): 3573-3581.
Tbx3 represses bmp4 expression and, with Pax6, is required and sufficient for retina formation. , Motahari Z., Development. October 1, 2016; 143 (19): 3560-3572.
Congenital Heart Disease Genetics Uncovers Context-Dependent Organization and Function of Nucleoporins at Cilia. , Del Viso F., Dev Cell. September 12, 2016; 38 (5): 478-92.
Prickle3 synergizes with Wtip to regulate basal body organization and cilia growth. , Chu CW., Sci Rep. April 11, 2016; 6 24104.
Genes regulated by potassium channel tetramerization domain containing 15 (Kctd15) in the developing neural crest. , Wong TC., Int J Dev Biol. January 1, 2016; 60 (4-6): 159-66.
Hspa9 is required for pronephros specification and formation in Xenopus laevis. , Gassié L., Dev Dyn. December 1, 2015; 244 (12): 1538-49.
The NIMA-like kinase Nek2 is a key switch balancing cilia biogenesis and resorption in the development of left- right asymmetry. , Endicott SJ., Development. December 1, 2015; 142 (23): 4068-79.
Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway. , Vitorino M., PLoS One. August 13, 2015; 10 (8): e0135504.