Results 1 - 50 of 50 results
Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway. , Solini GE., Dev Biol. April 15, 2020; 460 (2): 99-107.
Expression of the adhesion G protein-coupled receptor A2 (adgra2) during Xenopus laevis development. , Seigfried FA., Gene Expr Patterns. June 1, 2018; 28 54-61.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration. , Vega-López GA., Dev Dyn. August 1, 2015; 244 (8): 988-1013.
Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins. , Hardwick LJ ., Neural Dev. June 18, 2015; 10 15.
Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling. , Ossipova O., Biol Open. April 24, 2015; 4 (6): 722-30.
Heat shock 70-kDa protein 5 ( Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. , Shi W., J Biol Chem. January 2, 2015; 290 (1): 577-89.
NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling. , Zhang Y ., Dev Biol. August 1, 2014; 392 (1): 15-25.
Active repression by RARγ signaling is required for vertebrate axial elongation. , Janesick A ., Development. June 1, 2014; 141 (11): 2260-70.
Role of Rab11 in planar cell polarity and apical constriction during vertebrate neural tube closure. , Ossipova O., Nat Commun. May 13, 2014; 5 3734.
Xnr3 affects brain patterning via cell migration in the neural-epidermal tissue boundary during early Xenopus embryogenesis. , Morita M., Int J Dev Biol. January 1, 2013; 57 (9-10): 779-86.
Early neural crest induction requires an initial inhibition of Wnt signals. , Steventon B ., Dev Biol. May 1, 2012; 365 (1): 196-207.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis. , Barnett C., Mech Dev. January 1, 2012; 129 (9-12): 324-38.
Bmp indicator mice reveal dynamic regulation of transcriptional response. , Javier AL., PLoS One. January 1, 2012; 7 (9): e42566.
Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin. , Zhou J., Development. August 1, 2010; 137 (16): 2785-94.
Bone morphogenetic protein 15 ( BMP15) acts as a BMP and Wnt inhibitor during early embryogenesis. , Di Pasquale E., J Biol Chem. September 18, 2009; 284 (38): 26127-36.
Identification of novel transcripts with differential dorso- ventral expression in Xenopus gastrula using serial analysis of gene expression. , Faunes F., Genome Biol. February 11, 2009; 10 (2): R15.
An increase in intracellular Ca2+ is involved in pronephric tubule differentiation in the amphibian Xenopus laevis. , Leclerc C ., Dev Biol. September 15, 2008; 321 (2): 357-67.
Robust stability of the embryonic axial pattern requires a secreted scaffold for chordin degradation. , Inomata H ., Cell. September 5, 2008; 134 (5): 854-65.
A functional screen for genes involved in Xenopus pronephros development. , Kyuno J ., Mech Dev. July 1, 2008; 125 (7): 571-86.
Expression of complement components coincides with early patterning and organogenesis in Xenopus laevis. , McLin VA ., Int J Dev Biol. January 1, 2008; 52 (8): 1123-33.
Apoptosis regulates notochord development in Xenopus. , Malikova MA., Dev Biol. November 15, 2007; 311 (2): 434-48.
Wee1 kinase alters cyclin E/ Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis. , Wroble BN ., BMC Dev Biol. October 25, 2007; 7 119.
Noggin signaling from Xenopus animal blastomere lineages promotes a neural fate in neighboring vegetal blastomere lineages. , Huang S., Dev Dyn. January 1, 2007; 236 (1): 171-83.
Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. , Pohl BS., Gene. January 3, 2005; 344 21-32.
Xenopus MBD3 plays a crucial role in an early stage of development. , Iwano H., Dev Biol. April 15, 2004; 268 (2): 416-28.
Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. , Moore KB ., Dev Cell. January 1, 2004; 6 (1): 55-67.
A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos. , Stancheva I ., Mol Cell. August 1, 2003; 12 (2): 425-35.
The function of Xenopus germ cell nuclear factor ( xGCNF) in morphogenetic movements during neurulation. , Barreto G., Dev Biol. May 15, 2003; 257 (2): 329-42.
Gene expression pattern analysis of the tight junction protein, Claudin, in the early morphogenesis of Xenopus embryos. , Fujita M., Mech Dev. December 1, 2002; 119 Suppl 1 S27-30.
The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. , Hikasa H., Development. November 1, 2002; 129 (22): 5227-39.
Xerl, a novel CNS-specific secretory protein, establishes the boundary between neural plate and neural crest. , Kuriyama S ., Int J Dev Biol. December 1, 2001; 45 (8): 845-52.
Designation of the anterior/ posterior axis in pregastrula Xenopus laevis. , Lane MC ., Dev Biol. September 1, 2000; 225 (1): 37-58.
Xerl: a novel secretory protein expressed in eye and brain of Xenopus embryo. , Kuriyama S ., Mech Dev. May 1, 2000; 93 (1-2): 233-7.
Expanded retina territory by midbrain transformation upon overexpression of Six6 ( Optx2) in Xenopus embryos. , Bernier G., Mech Dev. May 1, 2000; 93 (1-2): 59-69.
Differential expression of the Groucho-related genes 4 and 5 during early development of Xenopus laevis. , Molenaar M., Mech Dev. March 1, 2000; 91 (1-2): 311-5.
Flik, a chick follistatin-related gene, functions in gastrular dorsalisation/neural induction and in subsequent maintenance of midline Sonic hedgehog signalling. , Towers P., Dev Biol. October 15, 1999; 214 (2): 298-317.
Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. , Davidson LA ., Development. October 1, 1999; 126 (20): 4547-56.
Adrenergic neurotransmitters and calcium ionophore-induced situs inversus viscerum in Xenopus laevis embryos. , Toyoizumi R., Dev Growth Differ. August 1, 1997; 39 (4): 505-14.
Xenopus Xsal-1, a vertebrate homolog of the region specific homeotic gene spalt of Drosophila. , Hollemann T ., Mech Dev. March 1, 1996; 55 (1): 19-32.
Caudalization of neural fate by tissue recombination and bFGF. , Cox WG., Development. December 1, 1995; 121 (12): 4349-58.
tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman. , Evans SM., Development. November 1, 1995; 121 (11): 3889-99.
Integrin expression in early amphibian embryos: cDNA cloning and characterization of Xenopus beta 1, beta 2, beta 3, and beta 6 subunits. , Ransom DG., Dev Biol. November 1, 1993; 160 (1): 265-75.
Analysis of Xwnt-4 in embryos of Xenopus laevis: a Wnt family member expressed in the brain and floor plate. , McGrew LL ., Development. June 1, 1992; 115 (2): 463-73.
Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos. , Brivanlou AH ., Development. July 1, 1989; 106 (3): 611-7.
Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin. , Herrmann H ., Development. February 1, 1989; 105 (2): 299-307.
Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin. , Herrmann H ., Development. February 1, 1989; 105 (2): 279-98.
The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. II. Experimental dissociation by lateral compression of the egg. , Black SD., Dev Biol. July 1, 1988; 128 (1): 65-71.
The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos. , Danilchik MV ., Dev Biol. July 1, 1988; 128 (1): 58-64.
Self-generated electrical currents through Xenopus neurulae. , Robinson KR., J Physiol. July 1, 1984; 352 339-52.