Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (10397) Expression Attributions Wiki
XB-ANAT-111

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

[The morphogenetic reactions of the ectoderm in the early gastrula of the clawed toad to mechanical stretching]., Luchinskaia NN., Ontogenez. January 1, 1997; 28 (2): 106-16.


Evaluation of the developmental toxicity of benzo[a]pyrene and 2-acetylaminofluorene using Xenopus: modes of biotransformation. Stover Group., Propst TL., Drug Chem Toxicol. January 1, 1997; 20 (1-2): 45-61.


Cell lineage determination and the control of neuronal identity in the neural crest., Anderson DJ., Cold Spring Harb Symp Quant Biol. January 1, 1997; 62 493-504.


Homeobox genes and heart development., Biben C., Cold Spring Harb Symp Quant Biol. January 1, 1997; 62 395-403.


Upstream and downstream from Brachyury, a gene required for vertebrate mesoderm formation., Smith JC., Cold Spring Harb Symp Quant Biol. January 1, 1997; 62 337-46.


Patterning by genes expressed in Spemann''s organizer., De Robertis EM., Cold Spring Harb Symp Quant Biol. January 1, 1997; 62 169-75.


Related signaling networks in Drosophila that control dorsoventral patterning in the embryo and the immune response., Wu LP., Cold Spring Harb Symp Quant Biol. January 1, 1997; 62 97-103.


Germ plasm assembly and germ cell migration in Drosophila., Rongo C., Cold Spring Harb Symp Quant Biol. January 1, 1997; 62 1-11.


Spatially distinct domains of cell behavior in the zebrafish organizer region., D'Amico LA., Biochem Cell Biol. January 1, 1997; 75 (5): 563-77.


The molecular control of cardiac ion channels., Clapham DE., Heart Vessels. January 1, 1997; Suppl 12 168-9.


A role of midkine in the development of the neuromuscular junction., Zhou H., Mol Cell Neurosci. January 1, 1997; 10 (1-2): 56-70.


Methylmercury decreases IL-1beta immunoreactivity in the nervous system of the developing frog Xenopus laevis., Jelaso AM., Neurotoxicology. January 1, 1997; 18 (3): 841-50.


Isolation, characterization and chromosomal localization of human WNT10B., Hardiman G., Cytogenet Cell Genet. January 1, 1997; 77 (3-4): 278-82.


Defining intermediate stages in cell determination: acquisition of a lens-forming bias in head ectoderm during lens determination., Grainger RM., Dev Genet. January 1, 1997; 20 (3): 246-57.            


A goldfish Notch-3 homologue is expressed in neurogenic regions of embryonic, adult, and regenerating brain and retina., Sullivan SA., Dev Genet. January 1, 1997; 20 (3): 208-23.


Perspectives on eye development., Fini ME., Dev Genet. January 1, 1997; 20 (3): 175-85.


Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders., Whiteley M., Dev Genet. January 1, 1997; 20 (2): 145-51.


Localizing the adhesive and signaling functions of plakoglobin., Rubenstein A., Dev Genet. January 1, 1997; 20 (2): 91-102.


Origin and morphogenesis of neurons in the frog cardiac ganglion., Heathcote RD., Kaohsiung J Med Sci. January 1, 1997; 13 (1): 36-41.


Heat shock protein gene expression during Xenopus development., Heikkila JJ., Cell Mol Life Sci. January 1, 1997; 53 (1): 114-21.


NeuroD and neurogenesis., Lee JE., Dev Neurosci. January 1, 1997; 19 (1): 27-32.


Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development., Casarosa S., Mech Dev. January 1, 1997; 61 (1-2): 187-98.          


Differential effects on Xenopus development of interference with type IIA and type IIB activin receptors., New HV., Mech Dev. January 1, 1997; 61 (1-2): 175-86.          


The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in the Xenopus embryo and transcriptional activation., Meersseman G., Mech Dev. January 1, 1997; 61 (1-2): 127-40.    


Graded amounts of Xenopus dishevelled specify discrete anteroposterior cell fates in prospective ectoderm., Itoh K., Mech Dev. January 1, 1997; 61 (1-2): 113-25.


Conservation of BMP signaling in zebrafish mesoderm patterning., Nikaido M., Mech Dev. January 1, 1997; 61 (1-2): 75-88.


LiCl-induced malformations of the eyes and the rostral CNS in Xenopus laevis., Reichenbach A., J Hirnforsch. January 1, 1997; 38 (1): 35-45.


Vertebrate neural induction., Hemmati-Brivanlou A., Annu Rev Neurosci. January 1, 1997; 20 43-60.


Retinoid receptors promote primary neurogenesis in Xenopus., Sharpe CR., Development. January 1, 1997; 124 (2): 515-23.        


Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3., Hansen CS., Development. January 1, 1997; 124 (2): 483-92.


Identification of otx2 target genes and restrictions in ectodermal competence during Xenopus cement gland formation., Gammill LS., Development. January 1, 1997; 124 (2): 471-81.          


A differential display strategy identifies Cryptic, a novel EGF-related gene expressed in the axial and lateral mesoderm during mouse gastrulation., Shen MM., Development. January 1, 1997; 124 (2): 429-42.


An essential role for retinoid signaling in anteroposterior neural patterning., Blumberg B., Development. January 1, 1997; 124 (2): 373-9.        


Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis., Castagna M., J Exp Biol. January 1, 1997; 200 (Pt 2): 269-86.


B-50/growth-associated protein-43, a marker of neural development in Xenopus laevis., Schrama LH., Neuroscience. January 1, 1997; 76 (2): 635-52.


Activin signalling has a necessary function in Xenopus early development., Dyson S., Curr Biol. January 1, 1997; 7 (1): 81-4.


A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos., Drechsel DN., Curr Biol. January 1, 1997; 7 (1): 12-23.


Xenopus Pax-6 and retinal development., Hirsch N., J Neurobiol. January 1, 1997; 32 (1): 45-61.            


Structure and cytoskeletal organization of migratory mesoderm cells from the Xenopus gastrula., Selchow A., Cell Motil Cytoskeleton. January 1, 1997; 36 (1): 12-29.


Differential regulation of neurogenesis by the two Xenopus GATA-1 genes., Xu RH., Mol Cell Biol. January 1, 1997; 17 (1): 436-43.


I(sK) Channel in Strial Marginal Cells. Voltage-Dependence, Ion-Selectivity, Inhibition by 293B and Sensitivity to Clofilium., Shen Z., Audit Neurosci. January 1, 1997; 3 (3): 215-230.


Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development., Mo R., Development. January 1, 1997; 124 (1): 113-23.


Thyroid hormone-dependent repression of α1-microglobulin/bikunin precursor (AMBP) gene expression during amphibian metamorphosis., Kawahara A., Dev Genes Evol. January 1, 1997; 206 (6): 355-362.


Localized axis determinant in the early cleavage embryo of the goldfish, Carassius auratus., Mizuno T., Dev Genes Evol. January 1, 1997; 206 (6): 389-396.


Isolation of chicken alpha ENaC splice variants from a cochlear cDNA library., Killick R., Biochim Biophys Acta. January 3, 1997; 1350 (1): 33-7.


Vertebrate embryonic cells will become nerve cells unless told otherwise., Hemmati-Brivanlou A., Cell. January 10, 1997; 88 (1): 13-7.  


Conversion of ectoderm into a neural fate by ATH-3, a vertebrate basic helix-loop-helix gene homologous to Drosophila proneural gene atonal., Takebayashi K., EMBO J. January 15, 1997; 16 (2): 384-95.


Over-expression of GATA-6 in Xenopus embryos blocks differentiation of heart precursors., Gove C., EMBO J. January 15, 1997; 16 (2): 355-68.


Xbap, a vertebrate gene related to bagpipe, is expressed in developing craniofacial structures and in anterior gut muscle., Newman CS., Dev Biol. January 15, 1997; 181 (2): 223-33.            


MinK potassium channels are heteromultimeric complexes., Tai KK., J Biol Chem. January 17, 1997; 272 (3): 1654-8.

???pagination.result.page??? ???pagination.result.prev??? 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 ???pagination.result.next???