Expression of LIM class homeobox gene Xlim-3 in Xenopus development is limited to neural and neuroendocrine tissues. , Taira M ., Dev Biol. September 1, 1993; 159 (1): 245-56.
v- erbA and citral reduce the teratogenic effects of all-trans retinoic acid and retinol, respectively, in Xenopus embryogenesis. , Schuh TJ ., Development. November 1, 1993; 119 (3): 785-98.
Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation. , Taira M ., Development. June 1, 1994; 120 (6): 1525-36.
XIPOU 2, a noggin-inducible gene, has direct neuralizing activity. , Witta SE., Development. March 1, 1995; 121 (3): 721-30.
Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. , Lemaire P ., Cell. April 7, 1995; 81 (1): 85-94.
The LIM class homeobox gene lim5: implied role in CNS patterning in Xenopus and zebrafish. , Toyama R., Dev Biol. August 1, 1995; 170 (2): 583-93.
The LIM homeodomain protein Lim-1 is widely expressed in neural, neural crest and mesoderm derivatives in vertebrate development. , Karavanov AA., Int J Dev Biol. April 1, 1996; 40 (2): 453-61.
Ectodermal patterning in vertebrate embryos. , Sasai Y ., Dev Biol. February 1, 1997; 182 (1): 5-20.
XIPOU 2 is a potential regulator of Spemann's Organizer. , Witta SE., Development. March 1, 1997; 124 (6): 1179-89.
Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. , Leyns L., Cell. March 21, 1997; 88 (6): 747-56.
Analysis of the developing Xenopus tail bud reveals separate phases of gene expression during determination and outgrowth. , Beck CW ., Mech Dev. March 1, 1998; 72 (1-2): 41-52.
Precocious expression of the Wilms' tumor gene xWT1 inhibits embryonic kidney development in Xenopus laevis. , Wallingford JB ., Dev Biol. October 1, 1998; 202 (1): 103-12.
Differential expression of non- muscle myosin heavy chain genes during Xenopus embryogenesis. , Bhatia-Dey N., Mech Dev. November 1, 1998; 78 (1-2): 33-6.
Dynamic patterns of gene expression in the developing pronephros of Xenopus laevis. , Carroll TJ ., Dev Genet. January 1, 1999; 24 (3-4): 199-207.
derrière: a TGF-beta family member required for posterior development in Xenopus. , Sun BI., Development. April 1, 1999; 126 (7): 1467-82.
Xenopus crescent encoding a Frizzled-like domain is expressed in the Spemann organizer and pronephros. , Shibata M ., Mech Dev. September 1, 2000; 96 (2): 243-6.
A study of Xlim1 function in the Spemann-Mangold organizer. , Kodjabachian L ., Int J Dev Biol. January 1, 2001; 45 (1): 209-18.
Identification of NKL, a novel Gli-Kruppel zinc-finger protein that promotes neuronal differentiation. , Lamar E., Development. April 1, 2001; 128 (8): 1335-46.
Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. , Zohn IE., Dev Biol. November 1, 2001; 239 (1): 118-31.
Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. , Saulnier DM., Dev Biol. August 1, 2002; 248 (1): 13-28.
The roles of three signaling pathways in the formation and function of the Spemann Organizer. , Xanthos JB., Development. September 1, 2002; 129 (17): 4027-43.
The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. , Hikasa H., Development. November 1, 2002; 129 (22): 5227-39.
Isolation and characterization of Xenopus Hey-1: a downstream mediator of Notch signaling. , Rones MS., Dev Dyn. December 1, 2002; 225 (4): 554-60.
Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. , Walmsley M., Development. December 1, 2002; 129 (24): 5683-95.
Selective degradation of excess Ldb1 by Rnf12/ RLIM confers proper Ldb1 expression levels and Xlim-1/ Ldb1 stoichiometry in Xenopus organizer functions. , Hiratani I., Development. September 1, 2003; 130 (17): 4161-75.
New roles for FoxH1 in patterning the early embryo. , Kofron M ., Development. October 1, 2004; 131 (20): 5065-78.
Xenopus aristaless-related homeobox ( xARX) gene product functions as both a transcriptional activator and repressor in forebrain development. , Seufert DW ., Dev Dyn. February 1, 2005; 232 (2): 313-24.
The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos. , Callery EM ., Dev Biol. February 15, 2005; 278 (2): 542-59.
The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. , Chen C ., Development. January 1, 2006; 133 (2): 319-29.
An amphioxus LIM-homeobox gene, AmphiLim1/5, expressed early in the invaginating organizer region and later in differentiating cells of the kidney and central nervous system. , Langeland JA., Int J Biol Sci. January 1, 2006; 2 (3): 110-6.
Genomic analysis of Xenopus organizer function. , Hufton AL., BMC Dev Biol. June 6, 2006; 6 27.
Xenopus ADAMTS1 negatively modulates FGF signaling independent of its metalloprotease activity. , Suga A., Dev Biol. July 1, 2006; 295 (1): 26-39.
FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development. , Urban AE ., Dev Biol. September 1, 2006; 297 (1): 103-17.
Retinoic acid signalling is required for specification of pronephric cell fate. , Cartry J., Dev Biol. November 1, 2006; 299 (1): 35-51.
ADMP2 is essential for primitive blood and heart development in Xenopus. , Kumano G ., Dev Biol. November 15, 2006; 299 (2): 411-23.
Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides. , Rana AA., PLoS Genet. November 17, 2006; 2 (11): e193.
Odd-skipped genes encode repressors that control kidney development. , Tena JJ., Dev Biol. January 15, 2007; 301 (2): 518-31.
Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. , Tran U ., Dev Biol. July 1, 2007; 307 (1): 152-64.
A role of D domain-related proteins in differentiation and migration of embryonic cells in Xenopus laevis. , Shibata T., Mech Dev. January 1, 2008; 125 (3-4): 284-98.
Expression cloning in Xenopus identifies RNA-binding proteins as regulators of embryogenesis and Rbmx as necessary for neural and muscle development. , Dichmann DS ., Dev Dyn. July 1, 2008; 237 (7): 1755-66.
Upstream stimulatory factors, USF1 and USF2 are differentially expressed during Xenopus embryonic development. , Fujimi TJ ., Gene Expr Patterns. July 1, 2008; 8 (6): 376-381.
Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus. , Colas A., Dev Biol. August 15, 2008; 320 (2): 351-65.
A dual requirement for Iroquois genes during Xenopus kidney development. , Alarcón P., Development. October 1, 2008; 135 (19): 3197-207.
Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system. , Strate I., Development. February 1, 2009; 136 (3): 461-72.
Embryogenesis and laboratory maintenance of the foam-nesting túngara frogs, genus Engystomops (= Physalaemus). , Romero-Carvajal A., Dev Dyn. June 1, 2009; 238 (6): 1444-54.
In vitro organogenesis from undifferentiated cells in Xenopus. , Asashima M ., Dev Dyn. June 1, 2009; 238 (6): 1309-20.
Coordinating the timing of cardiac precursor development during gastrulation: a new role for Notch signaling. , Miazga CM., Dev Biol. September 15, 2009; 333 (2): 285-96.
Notch activates Wnt-4 signalling to control medio- lateral patterning of the pronephros. , Naylor RW., Development. November 1, 2009; 136 (21): 3585-95.
Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. , Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.
A gene regulatory network controlling hhex transcription in the anterior endoderm of the organizer. , Rankin SA ., Dev Biol. March 15, 2011; 351 (2): 297-310.