Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (124) Expression Attributions Wiki
XB-ANAT-3349

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Autoradiographic localization of hormone-concentrating cells in the brain of an amphibian, Xenopus laevis. II. Estradiol., Morrell JI., J Comp Neurol. November 1, 1975; 164 (1): 63-77.


Locations of androgen-concentrating cells in the brain of Xenopus laevis: autoradiography with 3H-dihydrotestosterone., Kelley DB., J Comp Neurol. June 20, 1981; 199 (2): 221-31.


Karyoskeletal proteins and the organization of the amphibian oocyte nucleus., Benavente R., J Cell Sci Suppl. January 1, 1984; 1 161-86.                    


Messenger ribonucleic acid from tumors associated with humoral hypercalcemia of malignancy directs the synthesis of a secretory parathyroid hormone-like peptide., Broadus AE., Endocrinology. October 1, 1985; 117 (4): 1661-6.


The ontogeny of androgen receptors in the CNS of Xenopus laevis frogs., Gorlick DL., Dev Biol. May 1, 1986; 391 (2): 193-200.


Differential accumulation of oocyte nuclear proteins by embryonic nuclei of Xenopus., Dreyer C., Development. December 1, 1987; 101 (4): 829-46.                    


Conversion of a phosphoseryl/threonyl phosphatase into a phosphotyrosyl phosphatase., Goris J., Biochem J. December 15, 1988; 256 (3): 1029-34.


Microinjected Xenopus oocytes secrete mature, biologically active parathyroid hormone., Ikeda K., Mol Endocrinol. July 1, 1989; 3 (7): 1084-9.


Comparative neuroanatomy of the histaminergic system in the brain of the frog Xenopus laevis., Airaksinen MS., J Comp Neurol. February 15, 1990; 292 (3): 412-23.


Short- and long-term desensitization of serotonergic response in Xenopus oocytes injected with brain RNA: roles for inositol 1,4,5-trisphosphate and protein kinase C., Singer D., Pflugers Arch. April 1, 1990; 416 (1-2): 7-16.


Differential expression of two cadherins in Xenopus laevis., Angres B., Development. March 1, 1991; 111 (3): 829-44.                    


Expression of adenylate cyclase-coupled osseous parathyroid hormone and parathyroid hormone-like peptide receptors in Xenopus oocytes., Horiuchi T., J Biol Chem. March 15, 1991; 266 (8): 4700-5.


Caffeine inhibits inositol-trisphosphate-induced membrane potential oscillations in Xenopus oocytes., Berridge MJ., Proc Biol Sci. April 22, 1991; 244 (1309): 57-62.


Cellular mechanisms in proximal tubular reabsorption of inorganic phosphate., Murer H., Am J Physiol. May 1, 1991; 260 (5 Pt 1): C885-99.


Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos., Torpey NP., J Cell Sci. January 1, 1992; 101 ( Pt 1) 151-60.                


U-cadherin in Xenopus oogenesis and oocyte maturation., Müller AH., Development. February 1, 1992; 114 (2): 533-43.                


The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos., Taira M., Genes Dev. March 1, 1992; 6 (3): 356-66.              


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          


Multiple kinesin-like transcripts in Xenopus oocytes., Vernos I., Dev Biol. May 1, 1993; 157 (1): 232-9.        


Catenins in Xenopus embryogenesis and their relation to the cadherin-mediated cell-cell adhesion system., Schneider S., Development. June 1, 1993; 118 (2): 629-40.                    


Inositol 1,4,5-trisphosphate receptors in Xenopus laevis oocytes: localization and modulation by Ca2+., Callamaras N., Cell Calcium. January 1, 1994; 15 (1): 66-78.


Injection of bovine parathyroid poly(A)+ RNA into Xenopus oocytes confers sensitivity to high extracellular calcium., Chen TH., J Bone Miner Res. February 1, 1994; 9 (2): 293-300.


Neuropeptide Y in the developing and adult brain of the South African clawed toad Xenopus laevis., Tuinhof R., J Chem Neuroanat. October 1, 1994; 7 (4): 271-83.


[Parathyroid cells: structure of Ca2+ sensing receptor]., Yoshimoto K., Nihon Rinsho. April 1, 1995; 53 (4): 805-10.


The potassium channel subunit KV3.1b is localized to somatic and axonal membranes of specific populations of CNS neurons., Weiser M., J Neurosci. June 1, 1995; 15 (6): 4298-314.


Processing of the precursors to neurotensin and other bioactive peptides by cathepsin E., Kageyama T., J Biol Chem. August 11, 1995; 270 (32): 19135-40.


Parathyroid hormone stimulates electrogenic sodium transport in A6 cells., Rodriguez-Commes J., Biochem Biophys Res Commun. August 15, 1995; 213 (2): 688-98.


Mutational analysis of the cytoplasmic tail of the G protein-coupled receptor for parathyroid hormone (PTH) and PTH-related protein: effects on receptor expression and signaling., Huang Z., Mol Endocrinol. September 1, 1995; 9 (9): 1240-9.


Chromosomal locations of major tRNA gene clusters of Xenopus laevis., Narayanswami S., Chromosoma. October 1, 1995; 104 (1): 68-74.


Coexpression and stimulation of parathyroid hormone receptor positively regulates slowly activating IsK channels expressed in Xenopus oocytes., Waldegger S., Kidney Int. January 1, 1996; 49 (1): 112-6.


The zebrafish Fgf-3 gene: cDNA sequence, transcript structure and genomic organization., Kiefer P., Gene. February 12, 1996; 168 (2): 211-5.


Phosphorylated sites of M(r) 25,000 protein, a putative protein phosphatase 2A modulator, and phosphorylation of the synthetic peptide containing these sites by protein kinase C., Hashimoto E., J Biochem. April 1, 1996; 119 (4): 626-32.


Functional expression and signaling properties of cloned human parathyroid hormone receptor in Xenopus oocytes. Evidence for a novel signaling pathway., Tong Y., J Biol Chem. April 5, 1996; 271 (14): 8183-91.


Evidence for an anuran homologue of the mammalian spinocervicothalamic system: an in vitro tract-tracing study in Xenopus laevis., Muñoz A., Eur J Neurosci. July 1, 1996; 8 (7): 1390-400.


Characterization of a rat kidney thromboxane A2 receptor: high affinity for the agonist ligand I-BOP., D'Angelo DD., Prostaglandins. October 1, 1996; 52 (4): 303-16.


A midregion parathyroid hormone-related peptide mobilizes cytosolic calcium and stimulates formation of inositol trisphosphate in a squamous carcinoma cell line., Orloff JJ., Endocrinology. December 1, 1996; 137 (12): 5376-85.


The N-terminal region of the third intracellular loop of the parathyroid hormone (PTH)/PTH-related peptide receptor is critical for coupling to cAMP and inositol phosphate/Ca2+ signal transduction pathways., Huang Z., J Biol Chem. December 27, 1996; 271 (52): 33382-9.


Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens., Marín O., J Comp Neurol. February 3, 1997; 378 (1): 16-49.


Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians., Marín O., J Comp Neurol. June 16, 1997; 382 (4): 499-534.        


Identification, functional characterization, and developmental expression of two nonallelic parathyroid hormone (PTH)/PTH-related peptide receptor isoforms in Xenopus laevis (Daudin)., Bergwitz C., Endocrinology. February 1, 1998; 139 (2): 723-32.


ATP produces potassium currents via P3 purinoceptor in the follicle cell layer of Xenopus oocytes., Matsuoka T., Neurosci Lett. May 29, 1998; 248 (2): 130-2.


Amphibian Melanophore Technology as a Functional Screen for Antagonists of G-Protein Coupled 7-Transmembrane Receptors., Nuttall ME., J Biomol Screen. January 1, 1999; 4 (5): 269-278.


Postembryonic neural proliferation in the zebrafish forebrain and its relationship to prosomeric domains., Wullimann MF., Anat Embryol (Berl). April 1, 1999; 199 (4): 329-48.


Protein kinase C activators induce membrane retrieval of type II Na+-phosphate cotransporters expressed in Xenopus oocytes., Forster IC., J Physiol. June 1, 1999; 517 ( Pt 2) 327-40.


Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites., Weinreich F., J Gen Physiol. July 1, 1999; 114 (1): 55-70.                        


Metformin interaction with insulin-regulated glucose uptake, using the Xenopus laevis oocyte model expressing the mammalian transporter GLUT4., Detaille D., Eur J Pharmacol. July 14, 1999; 377 (1): 127-36.


Expression pattern of insulin receptor mRNA during Xenopus laevis embryogenesis., Groigno L., Mech Dev. August 1, 1999; 86 (1-2): 151-4.        


Constitutive receptor systems for drug discovery., Chen G., J Pharmacol Toxicol Methods. December 1, 1999; 42 (4): 199-206.


Regulation of differentiated osteoclasts., Gay CV., Crit Rev Eukaryot Gene Expr. January 1, 2000; 10 (3-4): 213-30.


Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon., Milán FJ., J Comp Neurol. March 27, 2000; 419 (1): 96-121.                  

???pagination.result.page??? 1 2 3 ???pagination.result.next???