Results 1 - 50 of 1622 results
Microsurgical Methods to Isolate and Culture the Early Gastrula Dorsal Marginal Zone. , Davidson LA ., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.prot097360.
Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants. , Houston DW ., Development. September 1, 2022; 149 (17):
Effective enrichment of stem cells in regenerating Xenopus laevis tadpole tails using the side population method. , Kato S., Dev Growth Differ. August 1, 2022; 64 (6): 290-296.
Comprehensive expression analysis for the core cell cycle regulators in the chicken embryo reveals novel tissue-specific synexpression groups and similarities and differences with expression in mouse, frog and zebrafish. , Alaiz Noya M., J Anat. July 1, 2022; 241 (1): 42-66.
Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm. , Matsuda M., Development. May 15, 2022; 149 (10):
An efficient miRNA knockout approach using CRISPR-Cas9 in Xenopus. , Godden AM., Dev Biol. March 1, 2022; 483 66-75.
Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration. , Patel JH., Dev Biol. March 1, 2022; 483 157-168.
Injury-induced Erk1/2 signaling tissue-specifically interacts with Ca2+ activity and is necessary for regeneration of spinal cord and skeletal muscle. , Levin JB., Cell Calcium. March 1, 2022; 102 102540.
Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration. , Suzuki S., Sci Rep. February 3, 2022; 12 (1): 1903.
Systematic mapping of rRNA 2''-O methylation during frog development and involvement of the methyltransferase Fibrillarin in eye and craniofacial development in Xenopus laevis. , Delhermite J ., PLoS Genet. January 18, 2022; 18 (1): e1010012.
Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal- ventral pattern in Xenopus laevis embryos. , Orlov EE., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.
The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. , Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.
dmrt2 and myf5 Link Early Somitogenesis to Left- Right Axis Determination in Xenopus laevis. , Tingler M., Front Cell Dev Biol. January 1, 2022; 10 858272.
Eya1 protein distribution during embryonic development of Xenopus laevis. , Almasoudi SH., Gene Expr Patterns. December 1, 2021; 42 119213.
Galloway-Mowat syndrome: New insights from bioinformatics and expression during Xenopus embryogenesis. , Treimer E., Gene Expr Patterns. December 1, 2021; 42 119215.
Deep learning is widely applicable to phenotyping embryonic development and disease. , Naert T., Development. November 1, 2021; 148 (21):
The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos. , Massé K ., Commun Biol. October 7, 2021; 4 (1): 1158.
Bicc1 and Dicer regulate left- right patterning through post-transcriptional control of the Nodal inhibitor Dand5. , Maerker M., Nat Commun. September 16, 2021; 12 (1): 5482.
Conserved role of the urotensin II receptor 4 signalling pathway to control body straightness in a tetrapod. , Alejevski F., Open Biol. August 1, 2021; 11 (8): 210065.
The Wnt/PCP formin Daam1 drives cell-cell adhesion during nephron development. , Krneta-Stankic V., Cell Rep. July 6, 2021; 36 (1): 109340.
BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. , Alkobtawi M., Cell Rep. June 22, 2021; 35 (12): 109289.
Anaplastic lymphoma kinase (alk), a neuroblastoma associated gene, is expressed in neural crest domains during embryonic development of Xenopus. , Moreno MM., Gene Expr Patterns. June 1, 2021; 40 119183.
The cytokine FAM3B/PANDER is an FGFR ligand that promotes posterior development in Xenopus. , Zhang F., Proc Natl Acad Sci U S A. May 18, 2021; 118 (20):
Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway. , Wang H., Development. May 15, 2021; 148 (10):
4-Octylphenol induces developmental abnormalities and interferes the differentiation of neural crest cells in Xenopus laevis embryos. , Xu Y ., Environ Pollut. April 1, 2021; 274 116560.
Evolution of Somite Compartmentalization: A View From Xenopus. , Della Gaspera B ., Front Cell Dev Biol. March 26, 2021; 9 790847.
Furry is required for cell movements during gastrulation and functionally interacts with NDR1. , Cervino AS., Sci Rep. March 23, 2021; 11 (1): 6607.
Characterising open chromatin in chick embryos identifies cis-regulatory elements important for paraxial mesoderm formation and axis extension. , Mok GF., Nat Commun. February 19, 2021; 12 (1): 1157.
Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds. , Kowalczyk I., Development. January 26, 2021; 148 (2):
Wnt-inducible Lrp6- APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway. , Colozza G ., Sci Rep. December 9, 2020; 10 (1): 21555.
Dact-4 is a Xenopus laevis Spemann organizer gene related to the Dapper/Frodo antagonist of β-catenin family of proteins. , Colozza G ., Gene Expr Patterns. December 1, 2020; 38 119153.
Expression of an endosome-excluded Cd63 prevents axis elongation in Xenopus. , Kreis J., MicroPubl Biol. November 27, 2020; 2020
Caveolin 1 is required for axonal outgrowth of motor neurons and affects Xenopus neuromuscular development. , Breuer M., Sci Rep. October 5, 2020; 10 (1): 16446.
Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway. , Ossipova O., Development. September 11, 2020; 147 (17):
Brachyury in the gastrula of basal vertebrates. , Bruce AEE., Mech Dev. September 1, 2020; 163 103625.
Disabled-2: a positive regulator of the early differentiation of myoblasts. , Shang N., Cell Tissue Res. September 1, 2020; 381 (3): 493-508.
Defective heart chamber growth and myofibrillogenesis after knockout of adprhl1 gene function by targeted disruption of the ancestral catalytic active site. , Smith SJ ., PLoS One. July 29, 2020; 15 (7): e0235433.
Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome. , Alharatani R., Hum Mol Genet. July 21, 2020; 29 (11): 1900-1921.
Interplay of TRIM2 E3 Ubiquitin Ligase and ALIX/ESCRT Complex: Control of Developmental Plasticity During Early Neurogenesis. , Lokapally A., Cells. July 20, 2020; 9 (7):
Chromatin accessibility and histone acetylation in the regulation of competence in early development. , Esmaeili M., Dev Biol. June 1, 2020; 462 (1): 20-35.
FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells. , Smith JA., J Cell Biol. April 6, 2020; 219 (4):
Mechanism for neurotransmitter-receptor matching. , Hammond-Weinberger DR., Proc Natl Acad Sci U S A. February 25, 2020; 117 (8): 4368-4374.
An in vivo brain-bacteria interface: the developing brain as a key regulator of innate immunity. , Herrera-Rincon C., NPJ Regen Med. February 4, 2020; 5 2.
Differential expression of foxo genes during embryonic development and in adult tissues of Xenopus tropicalis. , Zheng L., Gene Expr Patterns. January 1, 2020; 35 119091.
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O., Development. January 1, 2020;
Spatial analysis of RECK, MT1-MMP, and TIMP-2 proteins during early Xenopus laevis development. , Willson JA., Gene Expr Patterns. December 1, 2019; 34 119066.
Update on the Role of the Non-Canonical Wnt/Planar Cell Polarity Pathway in Neural Tube Defects. , Wang M., Cells. October 4, 2019; 8 (10):
Skeletal muscle differentiation drives a dramatic downregulation of RNA polymerase III activity and differential expression of Polr3g isoforms. , McQueen C., Dev Biol. October 1, 2019; 454 (1): 74-84.
Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier. , Della Gaspera B ., Dev Biol. September 1, 2019; 453 (1): 11-18.
A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus. , Li J., Sci Rep. August 1, 2019; 9 (1): 11191.