Results 1 - 18 of 18 results
Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms. , Mundell NA., J Comp Neurol. August 1, 2015; 523 (11): 1639-63.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye. , Atkinson-Leadbeater K ., Dev Dyn. May 1, 2014; .
Bcl6a function is required during optic cup formation to prevent p53-dependent apoptosis and colobomata. , Lee J ., Hum Mol Genet. September 1, 2013; 22 (17): 3568-82.
Unraveling new roles for serotonin receptor 2B in development: key findings from Xenopus. , Ori M ., Int J Dev Biol. January 1, 2013; 57 (9-10): 707-14.
Activity-based labeling of matrix metalloproteinases in living vertebrate embryos. , Keow JY., PLoS One. January 1, 2012; 7 (8): e43434.
Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice. , Rainger J., PLoS Genet. July 1, 2011; 7 (7): e1002114.
Transdifferentiation from cornea to lens in Xenopus laevis depends on BMP signalling and involves upregulation of Wnt signalling. , Day RC., BMC Dev Biol. January 26, 2011; 11 54.
FSHD region gene 1 ( FRG1) is crucial for angiogenesis linking FRG1 to facioscapulohumeral muscular dystrophy-associated vasculopathy. , Wuebbles RD., Dis Model Mech. January 1, 2009; 2 (5-6): 267-74.
Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling. , Lupo G., Development. April 1, 2005; 132 (7): 1737-48.
Catalase and peroxiredoxin 5 protect Xenopus embryos against alcohol-induced ocular anomalies. , Peng Y., Invest Ophthalmol Vis Sci. January 1, 2004; 45 (1): 23-9.
Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. , Take-uchi M., Development. March 1, 2003; 130 (5): 955-68.
Axes establishment during eye morphogenesis in Xenopus by coordinate and antagonistic actions of BMP4, Shh, and RA. , Sasagawa S., Genesis. June 1, 2002; 33 (2): 86-96.
Vax2 inactivation in mouse determines alteration of the eye dorsal- ventral axis, misrouting of the optic fibres and eye coloboma. , Barbieri AM., Development. February 1, 2002; 129 (3): 805-13.
Giant eyes in Xenopus laevis by overexpression of XOptx2. , Zuber ME ., Cell. August 6, 1999; 98 (3): 341-52.
Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development. , Casarosa S., Mech Dev. January 1, 1997; 61 (1-2): 187-98.
Retinoic acid establishes ventral retinal characteristics. , Hyatt GA., Development. January 1, 1996; 122 (1): 195-204.
Cell movements in Xenopus eye development. , Holt C., Nature. October 30, 1980; 287 (5785): 850-2.