Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (248) Attributions Wiki
XB-STAGE-16

Papers associated with NF stage 4 (8-cell)

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5

Sort Newest To Oldest Sort Oldest To Newest

Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning., Zhang J, King ML., Development. December 1, 1996; 122 (12): 4119-29.                  


Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia., Cleaver OB, Patterson KD, Krieg PA., Development. November 1, 1996; 122 (11): 3549-56.          


The mRNA encoding a beta subunit of heterotrimeric GTP-binding proteins is localized to the animal pole of Xenopus laevis oocyte and embryos., Devic E, Paquereau L, Rizzoti K, Monier A, Knibiehler B, Audigier Y., Mech Dev. October 1, 1996; 59 (2): 141-51.              


A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers., Launay C, Fromentoux V, Shi DL, Boucaut JC., Development. March 1, 1996; 122 (3): 869-80.                


TGF-beta signals and a pattern in Xenopus laevis endodermal development., Henry GL, Brivanlou IH, Kessler DS, Hemmati-Brivanlou A, Melton DA., Development. March 1, 1996; 122 (3): 1007-15.          


Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus., Gont LK, Fainsod A, Kim SH, De Robertis EM., Dev Biol. February 25, 1996; 174 (1): 174-8.  


Cloning and expression studies of cDNA for a novel Xenopus cadherin (XmN-cadherin), expressed maternally and later neural-specifically in embryogenesis., Tashiro K, Tooi O, Nakamura H, Koga C, Ito Y, Hikasa H, Shiokawa K., Mech Dev. February 1, 1996; 54 (2): 161-71.    


Drosophila short gastrulation induces an ectopic axis in Xenopus: evidence for conserved mechanisms of dorsal-ventral patterning., Schmidt J, Francois V, Bier E, Kimelman D., Development. December 1, 1995; 121 (12): 4319-28.                


Induction of avian cardiac myogenesis by anterior endoderm., Schultheiss TM, Xydas S, Lassar AB., Development. December 1, 1995; 121 (12): 4203-14.


Regulation of gene expression at the beginning of mammalian development., Nothias JY, Majumder S, Kaneko KJ, DePamphilis ML., J Biol Chem. September 22, 1995; 270 (38): 22077-80.


Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled., Sokol SY, Klingensmith J, Perrimon N, Itoh K., Development. June 1, 1995; 121 (6): 1637-47.              


Effect of activin and lithium on isolated Xenopus animal blastomeres and response alteration at the midblastula transition., Kinoshita K, Asashima M., Development. June 1, 1995; 121 (6): 1581-9.


Xenopus Gq alpha subunit activates the phosphatidylinositol pathway in Xenopus oocytes but does not consistently induce oocyte maturation., Guttridge KL, Smith LD, Miledi R., Proc Natl Acad Sci U S A. February 28, 1995; 92 (5): 1297-301.


The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development., Tang TL, Freeman RM, O'Reilly AM, Neel BG, Sokol SY., Cell. February 10, 1995; 80 (3): 473-83.              


Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes., Kloc M, Etkin LD., Development. February 1, 1995; 121 (2): 287-97.              


Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage., Ludolph DC, Neff AW, Mescher AL, Malacinski GM, Parker MA, Smith RC., Dev Biol. November 1, 1994; 166 (1): 18-33.                              


Morphogenesis and the cytoskeleton: studies of the Xenopus embryo., Klymkowsky MW, Karnovsky A., Dev Biol. October 1, 1994; 165 (2): 372-84.            


The location of the third cleavage plane of Xenopus embryos partitions morphogenetic information in animal quartets., Chung HM, Yokota H, Dent A, Malacinski GM, Neff AW., Int J Dev Biol. September 1, 1994; 38 (3): 421-8.


Delocalization of Vg1 mRNA from the vegetal cortex in Xenopus oocytes after destruction of Xlsirt RNA., Kloc M, Etkin LD., Science. August 19, 1994; 265 (5175): 1101-3.


Control of cell differentiation and morphogenesis in amphibian development., Fukui A, Asashima M., Int J Dev Biol. June 1, 1994; 38 (2): 257-66.


Xwnt-11: a maternally expressed Xenopus wnt gene., Ku M, Melton DA., Development. December 1, 1993; 119 (4): 1161-73.              


Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization., Hume CR, Dodd J., Development. December 1, 1993; 119 (4): 1147-60.        


Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo., Kinoshita K, Bessho T, Asashima M., Dev Biol. November 1, 1993; 160 (1): 276-84.        


Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos., Coffman CR, Skoglund P, Harris WA, Kintner CR., Cell. May 21, 1993; 73 (4): 659-71.            


Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation., Fujisue M, Kobayakawa Y, Yamana K., Development. May 1, 1993; 118 (1): 163-70.      


Localized expression of a Xenopus POU gene depends on cell-autonomous transcriptional activation and induction-dependent inactivation., Frank D, Harland RM., Development. June 1, 1992; 115 (2): 439-48.            


Evidence that Mos protein may not act directly on cyclin., Xu W, Ladner KJ, Smith LD., Proc Natl Acad Sci U S A. May 15, 1992; 89 (10): 4573-7.


Differential expression of two cadherins in Xenopus laevis., Angres B, Müller AH, Kellermann J, Hausen P., Development. March 1, 1991; 111 (3): 829-44.                    


The pattern of early cleavage of the marsupial frog Gastrotheca riobambae., del Pino EM, Loor-Vela S., Development. November 1, 1990; 110 (3): 781-9.


H-ras(val12) induces cytoplasmic but not nuclear events of the cell cycle in small Xenopus oocytes., Johnson AD, Cork RJ, Williams MA, Robinson KR, Smith LD., Cell Regul. June 1, 1990; 1 (7): 543-54.


In vivo regulation of MPF in Xenopus oocytes., Johnson AD, Smith LD., Development. May 1, 1990; 109 (1): 149-56.


Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres., Moody SA, Kline MJ., Anat Embryol (Berl). January 1, 1990; 182 (4): 347-62.


Reversal of dorsoventral polarity in Xenopus laevis embryos by 180 degrees rotation of the animal micromeres at the eight-cell stage., Cardellini P., Dev Biol. August 1, 1988; 128 (2): 428-34.


Relocation and reorganization of germ plasm in Xenopus embryos after fertilization., Ressom RE, Dixon KE., Development. July 1, 1988; 103 (3): 507-18.                  


Expression and segregation of nucleoplasmin during development in Xenopus., Litvin J, King ML., Development. January 1, 1988; 102 (1): 9-21.                    


Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos., Klymkowsky MW, Maynell LA, Polson AG., Development. July 1, 1987; 100 (3): 543-57.              


Reexamination of the 'regulative development' of amphibian embryos., Yamana K, Kageura H., Cell Differ. January 1, 1987; 20 (1): 3-10.


Development of the ectoderm in Xenopus: tissue specification and the role of cell association and division., Jones EA, Woodland HR., Cell. January 31, 1986; 44 (2): 345-55.                


The migration of amphibian primordial germ cells in the chick embryo., England MA, Swan AP, Dane P., Scan Electron Microsc. January 1, 1986; (Pt 3): 1175-82.


Calmodulin synthesis and accumulation during oogenesis and maturation of Xenopus laevis oocytes., Cicirelli MF, Smith LD., Dev Biol. January 1, 1986; 113 (1): 174-81.


Cytological analyses of factors which determine the number of primordial germ cells (PGCs) in Xenopus laevis., Akita Y, Wakahara M., J Embryol Exp Morphol. December 1, 1985; 90 251-65.


Growing Xenopus oocytes have spare translational capacity., Taylor MA, Johnson AD, Smith LD., Proc Natl Acad Sci U S A. October 1, 1985; 82 (19): 6586-9.


Protein synthesis in dorsal, ventral, animal and vegetal half-embryos of Xenopus laevis isolated at the 8-cell stage., Shiokawa K, Saito A, Kageura H, Higuchi K, Koga K, Yamana K., Cell Struct Funct. December 1, 1984; 9 (4): 369-80.


Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo., Warner AE, Guthrie SC, Gilula NB., Nature. September 13, 1984; 311 (5982): 127-31.


Pattern regulation in isolated halves and blastomeres of early Xenopus laevis., Kageura H, Yamana K., J Embryol Exp Morphol. April 1, 1983; 74 221-34.


DNA synthesis during lens regeneration in larval Xenopus laevis., Waggoner PR, Reyer RW., J Exp Zool. April 1, 1975; 192 (1): 65-71.


Quantitative and qualitative analysis of RNA synthesis in stage 6 and stage 4 oocytes of Xenopus laevis., LaMarca MJ, Smith LD, Strobel MC., Dev Biol. September 1, 1973; 34 (1): 106-18.


The cortex of Xenopus laevis embryos: regional differences in composition and biological activity., Tomkins R, Rodman WP., Proc Natl Acad Sci U S A. December 1, 1971; 68 (12): 2921-3.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5