The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. , Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.
A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT. , Gao L., Development. February 1, 2016; 143 (3): 492-503.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.
RMND5 from Xenopus laevis is an E3 ubiquitin-ligase and functions in early embryonic forebrain development. , Pfirrmann T ., PLoS One. March 16, 2015; 10 (3): e0120342.
The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation. , Acosta H., Development. March 15, 2015; 142 (6): 1146-58.
The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling. , Iwasaki Y ., Development. October 1, 2014; 141 (19): 3740-51.
Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus. , Young JJ ., Development. April 1, 2014; 141 (8): 1683-93.
The Prdm13 histone methyltransferase encoding gene is a Ptf1a- Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube. , Hanotel J., Dev Biol. February 15, 2014; 386 (2): 340-57.
40LoVe and Samba are involved in Xenopus neural development and functionally distinct from hnRNP AB. , Andreou M., PLoS One. January 1, 2014; 9 (1): e85026.
Maturin is a novel protein required for differentiation during primary neurogenesis. , Martinez-De Luna RI ., Dev Biol. December 1, 2013; 384 (1): 26-40.
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. , Ioannou A ., Dev Biol. August 15, 2013; 380 (2): 243-58.
ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis. , Janesick A ., Development. August 1, 2013; 140 (15): 3095-106.
Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene. , Nicetto D., PLoS Genet. January 1, 2013; 9 (1): e1003188.
AP-1( c- Jun/ FosB) mediates xFoxD5b expression in Xenopus early developmental neurogenesis. , Yoon J ., Int J Dev Biol. January 1, 2013; 57 (11-12): 865-72.
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. , Pieper M., Development. March 1, 2012; 139 (6): 1175-87.
Identification and characterization of ADAM41, a novel ADAM metalloproteinase in Xenopus. , Xu G., Int J Dev Biol. January 1, 2012; 56 (5): 333-9.
The homeobox leucine zipper gene Homez plays a role in Xenopus laevis neurogenesis. , Ghimouz R., Biochem Biophys Res Commun. November 11, 2011; 415 (1): 11-6.
Cloning and spatiotemporal expression of RIC-8 in Xenopus embryogenesis. , Maldonado-Agurto R., Gene Expr Patterns. October 1, 2011; 11 (7): 401-8.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.
Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate. , Fonar Y., Mol Biol Cell. July 1, 2011; 22 (13): 2409-21.
Rab3d is required for Xenopus anterior neurulation by regulating Noggin secretion. , Kim H ., Dev Dyn. June 1, 2011; 240 (6): 1430-9.
The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module. , Rogers CD., BMC Dev Biol. January 26, 2011; 11 74.
Histone XH2AX is required for Xenopus anterior neural development: critical role of threonine 16 phosphorylation. , Lee SY., J Biol Chem. September 17, 2010; 285 (38): 29525-34.
Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development. , Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.
BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus. , Wills AE ., Dev Biol. January 15, 2010; 337 (2): 335-50.
Frizzled-10 promotes sensory neuron development in Xenopus embryos. , Garcia-Morales C., Dev Biol. November 1, 2009; 335 (1): 143-55.
Xenopus ADAM19 is involved in neural, neural crest and muscle development. , Neuner R., Mech Dev. January 1, 2009; 126 (3-4): 240-55.
Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives. , Rogers CD., Mech Dev. January 1, 2009; 126 (1-2): 42-55.
Hairy2 functions through both DNA-binding and non DNA-binding mechanisms at the neural plate border in Xenopus. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 368-80.
Hairy2- Id3 interactions play an essential role in Xenopus neural crest progenitor specification. , Nichane M., Dev Biol. October 15, 2008; 322 (2): 355-67.
A new triple staining method for double in situ hybridization in combination with cell lineage tracing in whole-mount Xenopus embryos. , Koga M., Dev Growth Differ. October 1, 2007; 49 (8): 635-45.
Fibroblast growth factor 13 is essential for neural differentiation in Xenopus early embryonic development. , Nishimoto S., J Biol Chem. August 17, 2007; 282 (33): 24255-61.
The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo. , Hou S., Dev Cell. August 1, 2007; 13 (2): 226-41.
The E3 ubiquitin ligase skp2 regulates neural differentiation independent from the cell cycle. , Boix-Perales H., Neural Dev. March 15, 2007; 2 27.
Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis. , Chalmers AD ., Mech Dev. September 1, 2006; 123 (9): 702-18.
Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning. , Patil SS., Dev Dyn. July 1, 2006; 235 (7): 1895-907.
FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. , Fletcher RB., Development. May 1, 2006; 133 (9): 1703-14.
Dystroglycan is required for proper retinal layering. , Lunardi A ., Dev Biol. February 15, 2006; 290 (2): 411-20.
Novel Daple-like protein positively regulates both the Wnt/beta-catenin pathway and the Wnt/ JNK pathway in Xenopus. , Kobayashi H., Mech Dev. October 1, 2005; 122 (10): 1138-53.
DRAGON, a bone morphogenetic protein co-receptor. , Samad TA., J Biol Chem. April 8, 2005; 280 (14): 14122-9.
XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. , Nitta KR., Dev Biol. November 1, 2004; 275 (1): 258-67.
The intracellular domain of X- Serrate-1 is cleaved and suppresses primary neurogenesis in Xenopus laevis. , Kiyota T., Mech Dev. June 1, 2004; 121 (6): 573-85.
Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. , Kuroda H ., PLoS Biol. May 1, 2004; 2 (5): E92.
XMam1, the Xenopus homologue of mastermind, is essential to primary neurogenesis in Xenopus laevis embryos. , Katada T., Int J Dev Biol. September 1, 2003; 47 (6): 397-404.
The pro-BMP activity of Twisted gastrulation is independent of BMP binding. , Oelgeschläger M ., Development. September 1, 2003; 130 (17): 4047-56.
Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. , Oelgeschläger M ., Dev Cell. February 1, 2003; 4 (2): 219-30.
Dlx proteins position the neural plate border and determine adjacent cell fates. , Woda JM., Development. January 1, 2003; 130 (2): 331-42.
The E3 ubiquitin ligase GREUL1 anteriorizes ectoderm during Xenopus development. , Borchers AG ., Dev Biol. November 15, 2002; 251 (2): 395-408.
Molecular cloning and characterization of dullard: a novel gene required for neural development. , Satow R., Biochem Biophys Res Commun. July 5, 2002; 295 (1): 85-91.
XMeis3 protein activity is required for proper hindbrain patterning in Xenopus laevis embryos. , Dibner C., Development. September 1, 2001; 128 (18): 3415-26.