Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (131) Expression Attributions Wiki
XB-ANAT-3526

Papers associated with organ part

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation., Kramer BM., J Comp Neurol. April 9, 2001; 432 (3): 346-55.                    


Xotx5b, a new member of the Otx gene family, may be involved in anterior and eye development in Xenopus laevis., Vignali R., Mech Dev. August 1, 2000; 96 (1): 3-13.                  


Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration in Xenopus laevis hindlimbs., Wolfe AD., Dev Dyn. August 1, 2000; 218 (4): 681-97.        


Endogenous production of nitric oxide and effects of nitric oxide and superoxide on melanotrope functioning in the pituitary pars intermedia of Xenopus laevis., Allaerts W., Nitric Oxide. February 1, 2000; 4 (1): 15-28.


A gene trap approach in Xenopus., Bronchain OJ., Curr Biol. October 21, 1999; 9 (20): 1195-8.        


A new secreted protein that binds to Wnt proteins and inhibits their activities., Hsieh JC., Nature. April 1, 1999; 398 (6726): 431-6.    


Serotonergic innervation of the pituitary pars intermedia of xenopus laevis., Ubink R., J Neuroendocrinol. March 1, 1999; 11 (3): 211-9.


The RNA-binding protein gene, hermes, is expressed at high levels in the developing heart., Gerber WV., Mech Dev. January 1, 1999; 80 (1): 77-86.    


Chondroitin sulfates modulate axon guidance in embryonic Xenopus brain., Anderson RB., Dev Biol. October 15, 1998; 202 (2): 235-43.        


Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study., Ubink R., J Comp Neurol. July 20, 1998; 397 (1): 60-8.          


Xenopus eomesodermin is expressed in neural differentiation., Ryan K., Mech Dev. July 1, 1998; 75 (1-2): 155-8.    


Identification of a receptor-like protein tyrosine phosphatase expressed during Xenopus development., Yang CQ., Dev Dyn. July 1, 1998; 212 (3): 403-12.            


Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis., Tuinhof R., Cell Tissue Res. May 1, 1998; 292 (2): 251-65.


The Xenopus Emx genes identify presumptive dorsal telencephalon and are induced by head organizer signals., Pannese M., Mech Dev. April 1, 1998; 73 (1): 73-83.                


Forebrain differentiation and axonogenesis in amphibians: I. Differentiation of the suprachiasmatic nucleus in relation to background adaptation behavior., Eagleson GW., Brain Behav Evol. January 1, 1998; 52 (1): 23-36.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Xrx1, a novel Xenopus homeobox gene expressed during eye and pineal gland development., Casarosa S., Mech Dev. January 1, 1997; 61 (1-2): 187-98.          


Differential activation of the clustered homeobox genes CNOT2 and CNOT1 during notogenesis in the chick., Stein S., Dev Biol. December 15, 1996; 180 (2): 519-33.


A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm., Papalopulu N., Development. November 1, 1996; 122 (11): 3409-18.            


Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor., Van Strien FJ., Endocrinology. October 1, 1996; 137 (10): 4298-307.


Immunohistochemical investigation of gamma-aminobutyric acid ontogeny and transient expression in the central nervous system of Xenopus laevis tadpoles., Barale E., J Comp Neurol. April 29, 1996; 368 (2): 285-94.


Background adaptation and synapse plasticity in the pars intermedia of Xenopus laevis., Berghs CA., Neuroscience. February 1, 1996; 70 (3): 833-41.


Dorsal-ventral patterning and differentiation of noggin-induced neural tissue in the absence of mesoderm., Knecht AK., Development. June 1, 1995; 121 (6): 1927-35.        


A homeobox gene involved in node, notochord and neural plate formation of chick embryos., Stein S., Mech Dev. January 1, 1995; 49 (1-2): 37-48.


The expression pattern of two zebrafish achaete-scute homolog (ash) genes is altered in the embryonic brain of the cyclops mutant., Allende ML., Dev Biol. December 1, 1994; 166 (2): 509-30.


Central control of melanotrope cells of Xenopus laevis., Tuinhof R., Eur J Morphol. August 1, 1994; 32 (2-4): 307-10.


Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis., Roubos EW., Cell Tissue Res. December 1, 1993; 274 (3): 587-96.


Dual action of GABAA receptors on the secretory process of melanotrophs of Xenopus laevis., Jenks BG., Neuroendocrinology. July 1, 1993; 58 (1): 80-5.


Expression of a Xenopus Distal-less homeobox gene involved in forebrain and cranio-facial development., Dirksen ML., Mech Dev. May 1, 1993; 41 (2-3): 121-8.        


Induction of the Xenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene., von Dassow G., Genes Dev. March 1, 1993; 7 (3): 355-66.                


Alpha,N-acetyl beta-endorphin [1-8] is the terminal product of processing of endorphins in the melanotrope cells of Xenopus laevis, as demonstrated by FAB tandem mass spectrometry., van Strien FJ., Biochem Biophys Res Commun. February 26, 1993; 191 (1): 262-8.


The processing of beta-endorphin and alpha-melanotrophin in the pars intermedia of Xenopus laevis is influenced by background adaptation., Maruthainar K., J Endocrinol. December 1, 1992; 135 (3): 469-78.


Structure and expression of Xenopus prohormone convertase PC2., Braks JA., FEBS Lett. June 22, 1992; 305 (1): 45-50.


Transcriptional and posttranscriptional regulation of the proopiomelanocortin gene in the pars intermedia of the pituitary gland of Xenopus laevis., Ayoubi TA., Endocrinology. June 1, 1992; 130 (6): 3560-6.


Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis., de Rijk EP., Cytometry. January 1, 1992; 13 (8): 863-71.


Presence of Vi-transposon-like elements in the proopiomelanocortin gene A of Xenopus laevis does not affect gene activity., Deen PM., Mol Gen Genet. December 1, 1991; 230 (3): 491-3.


Indirect action of elevated potassium and neuropeptide Y on alpha MSH secretion from the pars intermedia of Xenopus laevis: a biochemical and morphological study., de Koning HP., Neuroendocrinology. July 1, 1991; 54 (1): 68-76.


[125I]Bolton-Hunter neuropeptide-Y-binding sites on folliculo-stellate cells of the pars intermedia of Xenopus laevis: a combined autoradiographic and immunocytochemical study., De Rijk EP., Endocrinology. February 1, 1991; 128 (2): 735-40.


The CRF-related peptide sauvagine stimulates and the GABAB receptor agonist baclofen inhibits cyclic-AMP production in melanotrope cells of Xenopus laevis., Jenks BG., Life Sci. January 1, 1991; 48 (17): 1633-7.


Demonstration of dopamine in electron-dense synaptic vesicles in the pars intermedia of Xenopus laevis, by freeze substitution and postembedding immunogold electron microscopy., van Strien FJ., Histochemistry. January 1, 1991; 96 (6): 505-10.


Characterization of the cDNA encoding proopiomelanocortin in the frog Rana ridibunda., Hilario E., Biochem Biophys Res Commun. December 14, 1990; 173 (2): 653-9.


EMA, an epithelial membrane-associated antigen during early development and morphogenesis ofXenopus laevis., Kiene B., Rouxs Arch Dev Biol. November 1, 1990; 199 (3): 164-168.


Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation., de Rijk EP., Gen Comp Endocrinol. July 1, 1990; 79 (1): 74-82.


Melanin concentrating hormone. V. Isolation and characterization of alpha-melanocyte-stimulating hormone from frog pituitary glands., Tonon MC., Life Sci. January 1, 1989; 45 (13): 1155-61.


N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process., Verburg-van Kemenade BM., Neuroendocrinology. October 1, 1987; 46 (4): 289-96.


Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis., Martens GJ., Biochem Biophys Res Commun. March 13, 1987; 143 (2): 678-84.      


Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 69-76.


GABA and dopamine act directly on melanotropes of Xenopus to inhibit MSH secretion., Verburg-Van Kemenade BM., Brain Res Bull. November 1, 1986; 17 (5): 697-704.


Regulation of melanotropin release from the pars intermedia of the amphibian Xenopus laevis: evaluation of the involvement of serotonergic, cholinergic, or adrenergic receptor mechanisms., Verburg-van Kemenade BM., Gen Comp Endocrinol. September 1, 1986; 63 (3): 471-80.


Characteristics of receptors for dopamine in the pars intermedia of the amphibian Xenopus laevis., Verburg-Van Kemenade BM., Neuroendocrinology. January 1, 1986; 44 (4): 446-56.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 ???pagination.result.next???