Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6695) Expression Attributions Wiki
XB-ANAT-177

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The positional coding system in the early eye rudiment of Xenopus laevis, and its modification after grafting operations., Cooke J., J Embryol Exp Morphol. October 1, 1983; 77 53-71.


Alcohol dehydrogenase isozymes in the clawed frog, Xenopus laevis., Wesolowski MH., Biochem Genet. October 1, 1983; 21 (9-10): 1003-17.


Photoreceptor disc shedding in eye cups. Inhibition by deletion of extracellular divalent cations., Greenberger LM., Invest Ophthalmol Vis Sci. November 1, 1983; 24 (11): 1456-64.


Is hypomethylation linked to activation of delta-crystallin genes during lens development?, Grainger RM., Nature. November 3, 1983; 306 (5938): 88-91.


Axon number in oculomotor nerves in Xenopus: removal of one eye primordium affects both sides., Schönenberger N., Neurosci Lett. November 11, 1983; 41 (3): 239-45.


[Appearance of secondary melanophore reactions in the ontogeny of anuran amphibia]., Zakharova LA., Ontogenez. January 1, 1984; 15 (5): 552-5.


A morphometric study of the retinal ganglion cell layer and optic nerve from metamorphosis in Xenopus laevis., Dunlop SA., Vision Res. January 1, 1984; 24 (5): 417-27.


Post-metamorphic retinal growth in Xenopus., Straznicky C., Anat Embryol (Berl). January 1, 1984; 169 (1): 103-9.


Two populations of rod photoreceptors in the retina of Xenopus laevis identified with 3H-fucose autoradiography., Hollyfield JG., Vision Res. January 1, 1984; 24 (8): 777-82.


[Synthesis of crystallin-like antigens and the capacity of the eye tissues of adult amphibia for transformation into the lens]., Simirskiĭ VN., Dokl Akad Nauk SSSR. January 1, 1984; 276 (6): 1488-90.


Astrocytic membrane morphology: differences between mammalian and amphibian astrocytes after axotomy., Wujek JR., J Comp Neurol. February 1, 1984; 222 (4): 607-19.


Circadian disc shedding in Xenopus retina in vitro., Flannery JG., Invest Ophthalmol Vis Sci. February 1, 1984; 25 (2): 229-32.


Induction of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine., Hoskins SG., Nature. February 23, 1984; 307 (5953): 730-3.


Two healing patterns correlate with different adult neural connectivity patterns in regenerating embryonic Xenopus retina., Ide CF., J Exp Zool. April 1, 1984; 230 (1): 71-80.


Demonstration of a polarizing signal that reverses future retinotectal patterns across Nuclepore filter barriers, in Xenopus embryonic eye., Sullivan K., Cell Differ. April 1, 1984; 14 (1): 33-45.


Common mechanisms in vertebrate axonal navigation: retinal transplants between distantly related amphibia., Harris WA., J Neurogenet. April 1, 1984; 1 (2): 127-40.


Does timing of axon outgrowth influence initial retinotectal topography in Xenopus?, Holt CE., J Neurosci. April 1, 1984; 4 (4): 1130-52.


The development of retinal ganglion cells in a tetraploid strain of Xenopus laevis: a morphological study utilizing intracellular dye injection., Sakaguchi DS., J Comp Neurol. April 1, 1984; 224 (2): 231-51.


Axonal transport of [35S]methionine labeled proteins in Xenopus optic nerve: phases of transport and the effects of nerve crush on protein patterns., Szaro BG., Dev Biol. April 16, 1984; 297 (2): 337-55.


Choline acetyltransferase and cholinesterases in the developing Xenopus retina., Ma PM., J Neurochem. May 1, 1984; 42 (5): 1328-37.


Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules., Fraser SE., Proc Natl Acad Sci U S A. July 1, 1984; 81 (13): 4222-6.


The actions of gamma-aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina., Stone S., J Physiol. August 1, 1984; 353 249-64.


Topography of the retinal ganglion cell layer of Xenopus., Graydon ML., J Anat. August 1, 1984; 139 ( Pt 1) 145-57.


Inositol incorporation into phosphoinositides in retinal horizontal cells of Xenopus laevis: enhancement by acetylcholine, inhibition by glycine., Anderson RE., J Cell Biol. August 1, 1984; 99 (2): 686-91.


Antibodies against filamentous components in discrete cell types of the mouse retina., Dräger UC., J Neurosci. August 1, 1984; 4 (8): 2025-42.


Application of reaction-diffusion models to cell patterning in Xenopus retina. Initiation of patterns and their biological stability., Shoaf SA., J Theor Biol. August 7, 1984; 109 (3): 299-329.


Regulation and possible role of serotonin N-acetyltransferase in the retina., Besharse JC., Fed Proc. September 1, 1984; 43 (12): 2704-8.


Fibre order in the normal Xenopus optic tract, near the chiasma., Fawcett JW., J Embryol Exp Morphol. October 1, 1984; 83 1-14.


CNS effects of mechanically produced spina bifida., Katz MJ., Dev Med Child Neurol. October 1, 1984; 26 (5): 617-31.


Inhibitors of metalloendoprotease activity prevent K+-stimulated neurotransmitter release from the retina of Xenopus laevis., Frederick JM., J Neurosci. December 1, 1984; 4 (12): 3112-9.


Uptake of 3H-glycine in the outer plexiform layer of the retina of the toad, Bufo marinus., Kleinschmidt J., J Comp Neurol. December 10, 1984; 230 (3): 352-60.


[Inductive effect of the eye tissues of adult clawed toads on the gastrula ectoderm]., Golubeva ON., Ontogenez. January 1, 1985; 16 (4): 389-97.


Does the amphibian eye have an ocular oxygen-concentrating mechanism?, Toews DP., Exp Biol. January 1, 1985; 43 (3): 179-82.


Environmental influence on shape of the crystalline lens: the amphibian example., Sivak JG., Exp Biol. January 1, 1985; 44 (1): 29-40.


Growth cones of developing retinal cells in vivo, on culture surfaces, and in collagen matrices., Harris WA., J Neurosci Res. January 1, 1985; 13 (1-2): 101-22.


Biochemical specificity of Xenopus notochord., Smith JC., Differentiation. January 1, 1985; 29 (2): 109-15.          


Specific changes in axonally transported proteins during regeneration of the frog (Xenopus laevis) optic nerve., Szaro BG., J Neurosci. January 1, 1985; 5 (1): 192-208.


The distribution of fibres in the optic tract after contralateral translocation of an eye in Xenopus., Taylor JS., J Embryol Exp Morphol. February 1, 1985; 85 225-38.


The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum., Udin SB., J Comp Neurol. February 1, 1985; 232 (1): 25-35.


Pharmacological modification of the light-induced responses of Müller (glial) cells in the amphibian retina., Witkovsky P., Dev Biol. February 25, 1985; 328 (1): 111-20.


Intertectal neuronal plasticity in Xenopus laevis: persistence despite catecholamine depletion., Udin SB., Dev Biol. March 1, 1985; 351 (1): 81-8.


Retrograde degeneration of myelinated axons and re-organization in the optic nerves of adult frogs (Xenopus laevis) following nerve injury or tectal ablation., Bohn RC., J Neurocytol. April 1, 1985; 14 (2): 221-44.


Regulation in the neural plate of Xenopus laevis demonstrated by genetic markers., Szaro B., J Exp Zool. April 1, 1985; 234 (1): 117-29.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. III. The role of thyroxine., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 930-40.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. II. Ingrowth of optic nerve fibers and production of ipsilaterally projecting retinal ganglion cells., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 920-9.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. I. Retinal distribution of ipsilaterally projecting cells in normal and experimentally manipulated frogs., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 911-9.


Relation of retinomotor responses and contractile proteins in vertebrate retinas., Drenckhahn D., Eur J Cell Biol. May 1, 1985; 37 156-68.


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R., Cell. May 1, 1985; 41 (1): 177-90.                      


Eye-specific segregation of optic afferents in mammals, fish, and frogs: the role of activity., Schmidt JT., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 5-34.


The role of visual experience in the formation of binocular projections in frogs., Udin SB., Cell Mol Neurobiol. June 1, 1985; 5 (1-2): 85-102.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ???pagination.result.next???