Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1484) Expression Attributions Wiki
XB-ANAT-225

Papers associated with eye primordium

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Cell surface molecule A5: a putative involvement in retinal central connection., Fujisawa H., Neurosci Res Suppl. January 1, 1990; 13 S11-7.


How does a nervous system produce behaviour? A case study in neurobiology., Roberts A., Sci Prog. January 1, 1990; 74 (293 Pt 1): 31-51.


The changing distribution of neurons in the inner nuclear layer from metamorphosis to adult: a morphometric analysis of the anuran retina., Zhu BS., Anat Embryol (Berl). January 1, 1990; 181 (6): 585-94.


Molecular approach to dorsoanterior development in Xenopus laevis., Sato SM., Dev Biol. January 1, 1990; 137 (1): 135-41.          


Circadian regulation of melatonin in the retina of Xenopus laevis: limitation by serotonin availability., Cahill GM., J Neurochem. February 1, 1990; 54 (2): 716-9.


Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis., LaFlamme SE., Dev Biol. February 1, 1990; 137 (2): 414-8.        


Ultrastructure of the crossed isthmotectal projection in Xenopus frogs., Udin SB., J Comp Neurol. February 8, 1990; 292 (2): 246-54.


Fully differentiated Xenopus eye fragments regenerate to form pattern-duplicated visuo-tectal projections., Wunsh LM., J Exp Zool. May 1, 1990; 254 (2): 192-201.


A mouse macrophage factor induces head structures and organizes a body axis in Xenopus., Sokol S., Science. August 3, 1990; 249 (4968): 561-4.


Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus., Udin SB., Science. August 10, 1990; 249 (4969): 669-72.


Early tissue interactions leading to embryonic lens formation in Xenopus laevis., Henry JJ., Dev Biol. September 1, 1990; 141 (1): 149-63.


Xotch, the Xenopus homolog of Drosophila notch., Coffman C., Science. September 21, 1990; 249 (4975): 1438-41.


The structure and expression of a distantly related member of the beta-gamma crystallin super gene family from Xenopus., Shastry BS., Biochem Biophys Res Commun. September 28, 1990; 171 (3): 1338-43.


In situ analysis of neuronal dynamics and positional cues in the patterning of nerve connections., Fraser SE., J Exp Biol. October 1, 1990; 153 61-70.


Expression of the N-myc proto-oncogene during the early development of Xenopus laevis., Vize PD., Development. November 1, 1990; 110 (3): 885-96.    


Immune responses of intact and embryonically enucleated frogs to self-lens antigens., Rollins-Smith LA., J Immunol. November 15, 1990; 145 (10): 3262-7.


Microglia in tadpoles of Xenopus laevis: normal distribution and the response to optic nerve injury., Goodbrand IA., Anat Embryol (Berl). January 1, 1991; 184 (1): 71-82.


A retinoic acid receptor expressed in the early development of Xenopus laevis., Ellinger-Ziegelbauer H., Genes Dev. January 1, 1991; 5 (1): 94-104.              


The early development of the frog retinotectal projection., Taylor JS., Development. January 1, 1991; Suppl 2 95-104.            


Regenerative capacity of retinal cells and the maintenance of their differentiation., Lopashov GV., Ciba Found Symp. January 1, 1991; 160 209-17; discussion 217-8.


Transgenic Xenopus laevis tadpoles: a transient in vivo model system for the manipulation of lens function and lens development., Brakenhoff RH., Nucleic Acids Res. March 25, 1991; 19 (6): 1279-84.


Molecular cloning and characterization of a new member of the gap junction gene family, connexin-31., Hoh JH., J Biol Chem. April 5, 1991; 266 (10): 6524-31.


A method for the demonstration of NADPH-diaphorase activity in anuran species using unfixed retinal wholemounts., Gábriel R., Arch Histol Cytol. May 1, 1991; 54 (2): 207-11.


Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer., Servetnick M., Development. May 1, 1991; 112 (1): 177-88.                  


Hyaluronan as a propellant for epithelial movement: the development of semicircular canals in the inner ear of Xenopus., Haddon CM., Development. June 1, 1991; 112 (2): 541-50.                          


The eye in the brain: retinoic acid effects morphogenesis of the eye and pathway selection of axons but not the differentiation of the retina in Xenopus laevis., Manns M., Neurosci Lett. June 24, 1991; 127 (2): 150-4.


Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos., Ruiz i Altaba A., Development. August 1, 1991; 112 (4): 945-58.                


Homeogenetic neural induction in Xenopus., Servetnick M., Dev Biol. September 1, 1991; 147 (1): 73-82.      


Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts., Su MW., J Cell Biol. October 1, 1991; 115 (2): 565-75.                


Rhythmic regulation of retinal melatonin: metabolic pathways, neurochemical mechanisms, and the ocular circadian clock., Cahill GM., Cell Mol Neurobiol. October 1, 1991; 11 (5): 529-60.


XLPOU 1 and XLPOU 2, two novel POU domain genes expressed in the dorsoanterior region of Xenopus embryos., Agarwal VR., Dev Biol. October 1, 1991; 147 (2): 363-73.                  


Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors., Cahill GM., J Neurosci. October 1, 1991; 11 (10): 2959-71.


Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos., Papalopulu N., Development. December 1, 1991; 113 (4): 1145-58.                          


Embryonic retinal ablation and post-metamorphic optic nerve crush: effects upon the pattern of regenerated retinotectal connections., Underwood LW., J Exp Zool. January 1, 1992; 261 (1): 18-26.


Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. III. Modifications following early eye rotation., Grant S., Exp Brain Res. January 1, 1992; 89 (2): 383-96.


The "ON"-bipolar agonist, L-2-amino-4-phosphonobutyrate, blocks light-evoked cone contraction in xenopus eye cups., Besharse JC., Neurochem Res. January 1, 1992; 17 (1): 75-80.


Plasticity of binocular visual connections in the frog, Xenopus laevis: reversibility of effects of early visual deprivation., Keating MJ., Exp Brain Res. January 1, 1992; 90 (1): 121-8.


Light-evoked contraction of red absorbing cones in the Xenopus retina is maximally sensitive to green light., Besharse JC., Vis Neurosci. March 1, 1992; 8 (3): 243-9.


Xlcaax-1 is localized to the basolateral membrane of kidney tubule and other polarized epithelia during Xenopus development., Cornish JA., Dev Biol. March 1, 1992; 150 (1): 108-20.                  


An autoradiographic time study during regeneration in fully differentiated Xenopus eyes., Underwood LW., J Exp Zool. May 1, 1992; 262 (2): 193-201.


Embryonic expression and functional analysis of a Xenopus activin receptor., Hemmati-Brivanlou A., Dev Dyn. May 1, 1992; 194 (1): 1-11.        


A unique mutation in the Enhancer of split gene complex affects the fates of the mystery cells in the developing Drosophila eye., Fischer-Vize JA., Development. May 1, 1992; 115 (1): 89-101.


Identification and developmental expression of a novel low molecular weight neuronal intermediate filament protein expressed in Xenopus laevis., Charnas LR., J Neurosci. August 1, 1992; 12 (8): 3010-24.                      


N-cadherin transcripts in Xenopus laevis from early tailbud to tadpole., Simonneau L., Dev Dyn. August 1, 1992; 194 (4): 247-60.                


Isthmotectal axons make ectopic synapses in monocular regions of the tectum in developing Xenopus laevis frogs., Udin SB., J Comp Neurol. August 22, 1992; 322 (4): 461-70.


A protein expressed in the growth cones of embryonic vertebrate neurons defines a new class of intermediate filament protein., Hemmati-Brivanlou A., Neuron. September 1, 1992; 9 (3): 417-28.


Xenopus exhibits seasonal variation in retinotectal latency but not tecto-isthmo-tectal latency., Scherer WJ., J Comp Physiol A. September 1, 1992; 171 (2): 207-12.


The Critical Period for Experience-dependent Plasticity in a System of Binocular Visual Connections in Xenopus laevis: Its Extension by Dark-rearing., Grant S., Eur J Neurosci. October 1, 1992; 4 (1): 37-45.


The Critical Period for Experience-dependent Plasticity in a System of Binocular Visual Connections in Xenopus laevis: Its Temporal Profile and Relation to Normal Developmental Requirements., Keating MJ., Eur J Neurosci. October 1, 1992; 4 (1): 27-36.


Spatially restricted expression of fibroblast growth factor receptor-2 during Xenopus development., Friesel R., Development. December 1, 1992; 116 (4): 1051-8.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???