Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (984) Expression Attributions Wiki
XB-ANAT-1564

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The hypophysis of Xenopus laevis Daudin larvae after removal of the anterior hypothalamus., GUARDABASSI A., Gen Comp Endocrinol. October 1, 1961; 1 348-63.


Biogenic amines in the hypothalamus of Xenopus leavis tadpoles., Goos HJ., Naturwissenschaften. August 1, 1968; 55 (8): 393-4.


Ultrastructural aspects of the nucleus infundibularis dorsalis in the caudal hypothalamus of Xenopus laevis., Peute J., Z Zellforsch Mikrosk Anat. March 7, 1973; 137 (4): 513-20.


Determination by radioimmunoassay of the luteinising hormone-releasing hormone (LHRH) content of the hypothalamus of the rat and some lower vertebrates., Deery DJ., Gen Comp Endocrinol. November 1, 1974; 24 (3): 280-5.


Autoradiographic localization of hormone-concentrating cells in the brain of an amphibian, Xenopus laevis. II. Estradiol., Morrell JI., J Comp Neurol. November 1, 1975; 164 (1): 63-77.


Autoradiographic localization of hormone-concentrating cells in the brain of an amphibian, Xenopus laevis. I. Testosterone., Kelley DB., J Comp Neurol. November 1, 1975; 164 (1): 47-59.


An ultrastructural study of the thyroid gland in the pre-metamorphic Xenopus laevis (Daudin) tadpole., Jayatilaka AD., J Anat. March 1, 1978; 125 (Pt 3): 579-91.


[Immunohistochemical identification, in an anuran amphibian (Xenopus laevis Daud.) of infundibular neurons reacting with antigastrin serum]., Doerr-Schott J., C R Acad Sci Hebd Seances Acad Sci D. April 2, 1979; 288 (13): 1055-8.


Locating the major glycoprotein (Po protein) in the x-ray profile of frog sciatic-nerve myelin., Blaurock AE., J Neurochem. June 1, 1979; 32 (6): 1753-60.


Immunohistochemical localization of a gastrin-like peptide in the brain of an amphibian, Xenopus laevis Daud., Doerr-Schott J., Cell Tissue Res. November 1, 1979; 203 (1): 65-78.


Rental projections in the adult Xenopus laevis: a study with cobalt filling technique., Tóth P., Acta Morphol Acad Sci Hung. January 1, 1980; 28 (4): 365-74.


Substance P-related peptides in the hypothalamus of amphibia., Gaudino G., Cell Tissue Res. January 1, 1980; 211 (2): 241-50.


Gastrin-like peptides in the amphibian brain: an immunohistochemical study., Doerr-Schott J., Peptides. January 1, 1981; 2 Suppl 2 99-107.


A review of the neuroembryology of monoamine systems., Golden GS., Brain Res Bull. January 1, 1982; 9 (1-6): 553-8.


Cerebrospinal fluid-contacting neurons and other somatostatin-immunoreactive perikarya in brains of tadpoles of Xenopus laevis., Blähser S., Cell Tissue Res. January 1, 1982; 224 (3): 693-7.


Ultrastructural studies on the replication of herpes simplex virus in PK and XTC-2 cells., Ciampor F., Acta Virol. January 1, 1982; 26 (1-2): 67-72.


Further observations on the distribution and properties of teleost melanin concentrating hormone., Baker BI., Gen Comp Endocrinol. June 1, 1983; 50 (3): 423-31.


Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase., Besharse JC., Nature. September 8, 1983; 305 (5930): 133-5.


The 5S ribosomal RNA gene clusters in Tetrahymena thermophila: strain differences, chromosomal localization, and loss during micronuclear ageing., Allen SL., Mol Gen Genet. January 1, 1984; 197 (2): 244-53.


Signal recognition particle triggers the translocation of storage globulin polypeptides from field beans (Vicia faba L.) across mammalian endoplasmic reticulum membrane., Bassüner R., FEBS Lett. January 30, 1984; 166 (2): 314-20.


Inhibition of eukaryotic tRNA transcription by potential Z-DNA sequences., Santoro C., EMBO J. July 1, 1984; 3 (7): 1553-9.


Ontogeny of brain neurotensin in the rat: a radioimmunoassay study., Bissette G., J Neurochem. July 1, 1984; 43 (1): 283-7.


Rapid embedding of tissues in Lowicryl K4M for immunoelectron microscopy., Altman LG., J Histochem Cytochem. November 1, 1984; 32 (11): 1217-23.


Motor hypoactivity induced by neurotensin and related peptides in mice., Meisenberg G., Pharmacol Biochem Behav. February 1, 1985; 22 (2): 189-93.


Occurrence of a species-specific nuclear antigen in the germ line of Xenopus and its expression from paternal genes in hybrid frogs., Wedlich D., Dev Biol. March 1, 1985; 108 (1): 220-34.                


Monoclonal antibodies to the cells of a regenerating limb., Kintner CR., J Embryol Exp Morphol. October 1, 1985; 89 37-55.            


Estrogen-induced progestin receptors in the brain and pituitary of the South African clawed frog, Xenopus laevis., Roy EJ., Neuroendocrinology. January 1, 1986; 42 (1): 51-6.


[Movements of cellular material of the dorsal wall in clawed-toad embryos during gastrulation and neurulation]., Petrov KV., Ontogenez. January 1, 1986; 17 (1): 78-83.


The development of serotonergic raphespinal projections in Xenopus laevis., van Mier P., Int J Dev Neurosci. January 1, 1986; 4 (5): 465-75.


Embryonic and regenerating Xenopus retinal fibers are intrinsically different., Grant P., Dev Biol. April 1, 1986; 114 (2): 475-91.


Processing of the thyrotropin releasing hormone (TRH) precursor in Xenopus skin and bovine hypothalamus: evidence for the existence of extended forms of TRH., Cockle SM., Regul Pept. May 1, 1986; 14 (3): 217-27.


The pituitary adrenocorticotropes originate from neural ridge tissue in Xenopus laevis., Eagleson GW., J Embryol Exp Morphol. June 1, 1986; 95 1-14.              


Mapping of the displacement loop within the nucleotide sequence of Xenopus laevis mitochondrial DNA., Cairns SS., J Biol Chem. June 25, 1986; 261 (18): 8481-7.


The distribution of interrenal stimulating activity in the brain of Xenopus laevis., Thurmond W., Gen Comp Endocrinol. July 1, 1986; 63 (1): 117-24.


Heterogeneous kinetic properties of acetylcholine receptor channels in Xenopus myocytes., Auerbach A., J Physiol. September 1, 1986; 378 119-40.


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


An NPY-like peptide may function as MSH-release inhibiting factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 61-7.


Immunocytochemical localization and spatial relation to the adenohypophysis of a somatostatin-like and a corticotropin-releasing factor-like peptide in the brain of four amphibian species., Olivereau M., Cell Tissue Res. February 1, 1987; 247 (2): 317-24.


Neurogenesis in the vocalization pathway of Xenopus laevis., Gorlick DL., J Comp Neurol. March 22, 1987; 257 (4): 614-27.


Effect of tetraploidy on dendritic branching in neurons and glial cells of the frog, Xenopus laevis., Szaro BG., J Comp Neurol. April 8, 1987; 258 (2): 304-16.


Single olfactory organ associated with prosencephalic malformation and cyclopia in a Xenopus laevis tadpole., Magrassi L., Dev Biol. June 2, 1987; 412 (2): 386-90.


Development of substance P-like immunoreactivity in Xenopus embryos., Gallagher BC., J Comp Neurol. June 8, 1987; 260 (2): 175-85.


Immunocytochemical analysis of proenkephalin-derived peptides in the amphibian hypothalamus and optic tectum., Merchenthaler I., Dev Biol. July 28, 1987; 416 (2): 219-27.    


Chloride-thiocyanate interactions in frog muscle anion-conducting channels at pH 5., Vaughan PC., Pflugers Arch. September 1, 1987; 410 (1-2): 153-8.


Effects of substitution of putative transmembrane segments on nicotinic acetylcholine receptor function., Tobimatsu T., FEBS Lett. September 28, 1987; 222 (1): 56-62.


Immunocytochemical studies of vasotocin, mesotocin, and neurophysins in the Xenopus hypothalamo-neurohypophysial system., Conway KM., J Comp Neurol. October 22, 1987; 264 (4): 494-508.


Activation of the primary kinetic modes of large- and small-conductance cholinergic ion channels in Xenopus myocytes., Auerbach A., J Physiol. December 1, 1987; 393 437-66.


Expression and segregation of nucleoplasmin during development in Xenopus., Litvin J., Development. January 1, 1988; 102 (1): 9-21.                    


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


Immunocytochemical and morphological evidence for a retinopetal projection in anuran amphibians., Uchiyama H., J Comp Neurol. August 1, 1988; 274 (1): 48-59.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???