Results 1 - 20 of 20 results
The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. , Griffin JN., PLoS Genet. March 10, 2015; 11 (3): e1005018.
A novel function for Egr4 in posterior hindbrain development. , Bae CJ., Sci Rep. January 12, 2015; 5 7750.
SUMOylated SoxE factors recruit Grg4 and function as transcriptional repressors in the neural crest. , Lee PC., J Cell Biol. September 3, 2012; 198 (5): 799-813.
RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm. , Janesick A ., Development. March 1, 2012; 139 (6): 1213-24.
V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. , Vandenberg LN ., Dev Dyn. August 1, 2011; 240 (8): 1889-904.
Cardiac neural crest is dispensable for outflow tract septation in Xenopus. , Lee YH ., Development. May 1, 2011; 138 (10): 2025-34.
Long-term consequences of Sox9 depletion on inner ear development. , Park BY., Dev Dyn. April 1, 2010; 239 (4): 1102-12.
Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest. , Betancur P., Proc Natl Acad Sci U S A. February 23, 2010; 107 (8): 3570-5.
CHD7 cooperates with PBAF to control multipotent neural crest formation. , Bajpai R ., Nature. February 18, 2010; 463 (7283): 958-62.
Hindbrain-derived Wnt and Fgf signals cooperate to specify the otic placode in Xenopus. , Park BY., Dev Biol. December 1, 2008; 324 (1): 108-21.
Sox9 is required for invagination of the otic placode in mice. , Barrionuevo F., Dev Biol. May 1, 2008; 317 (1): 213-24.
An NF-kappaB and slug regulatory loop active in early vertebrate mesoderm. , Zhang C., PLoS One. December 27, 2006; 1 e106.
The role of Paraxial Protocadherin in Xenopus otic placode development. , Hu RY., Biochem Biophys Res Commun. June 23, 2006; 345 (1): 239-47.
SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. , Taylor KM., Dev Cell. November 1, 2005; 9 (5): 593-603.
Xenopus Id3 is required downstream of Myc for the formation of multipotent neural crest progenitor cells. , Light W., Development. April 1, 2005; 132 (8): 1831-41.
A slug, a fox, a pair of sox: transcriptional responses to neural crest inducing signals. , Heeg-Truesdell E., Birth Defects Res C Embryo Today. June 1, 2004; 72 (2): 124-39.
Regulated gene expression of hyaluronan synthases during Xenopus laevis development. , Nardini M., Gene Expr Patterns. May 1, 2004; 4 (3): 303-8.
Specification of the otic placode depends on Sox9 function in Xenopus. , Saint-Germain N ., Development. April 1, 2004; 131 (8): 1755-63.
Sox10 regulates the development of neural crest-derived melanocytes in Xenopus. , Aoki Y., Dev Biol. July 1, 2003; 259 (1): 19-33.
The transcription factor Sox9 is required for cranial neural crest development in Xenopus. , Spokony RF., Development. January 1, 2002; 129 (2): 421-32.