Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (174) Expression Attributions Wiki
XB-ANAT-3732

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

In vitro synthesis of RNA by Xenopus spermatogenic cells I. Evidence for polyadenylated and non-polyadenylated RNA synthesis in different cell populations., Kalt MR., J Exp Zool. April 1, 1979; 208 (1): 77-96.


A freeze-fracture study of synaptogenesis in the distal retina of larval Xenopus., Nagy AR., J Neurocytol. December 1, 1981; 10 (6): 897-919.


Rod and cone inputs to bipolar and horizontal cells of the Xenopus retina., Witkovsky P., Vision Res. January 1, 1983; 23 (11): 1251-8.


Microinjection of purified ornithine decarboxylase into Xenopus oocytes selectively stimulates ribosomal RNA synthesis., Russell DH., Proc Natl Acad Sci U S A. March 1, 1983; 80 (5): 1318-21.


Olfaction by melanophores: what does it mean?, Lerner MR., Proc Natl Acad Sci U S A. January 1, 1988; 85 (1): 261-4.


Somatostatin-like immunoreactivity and glycine high-affinity uptake colocalize to an interplexiform cell of the Xenopus laevis retina., Smiley JF., J Comp Neurol. August 22, 1988; 274 (4): 608-18.


Inward rectifier produced by Xenopus oocytes injected with mRNA extracted from carp olfactory epithelium., Yoshii K., Synapse. January 1, 1989; 3 (3): 234-8.


Thyroxine-dependent modulations of the expression of the neural cell adhesion molecule N-CAM during Xenopus laevis metamorphosis., Levi G., Development. April 1, 1990; 108 (4): 681-92.   


Olfactory neurons express a unique glycosylated form of the neural cell adhesion molecule (N-CAM)., Key B., J Cell Biol. May 1, 1990; 110 (5): 1729-43.   


Physiological and morphological properties of off- and on-center bipolar cells in the Xenopus retina: effects of glycine and GABA., Stone S., Vis Neurosci. October 1, 1991; 7 (4): 363-76.


Basolateral uptake and tubular metabolism of L-citrulline in the isolated-perfused non-filtering kidney of the African clawed toad (Xenopus laevis)., Gekle M., Pflugers Arch. November 1, 1991; 419 (5): 492-8.


Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium., Altenhofen W., Proc Natl Acad Sci U S A. November 1, 1991; 88 (21): 9868-72.


Serotonin synthesis and accumulation by neurons of the anuran retina., Zhu B., Vis Neurosci. January 1, 1992; 9 (3-4): 377-88.


Calcium-binding proteins in chemoreceptors of Xenopus laevis., Kerschbaum HH., Tissue Cell. January 1, 1992; 24 (5): 719-24.


Xlcaax-1 is localized to the basolateral membrane of kidney tubule and other polarized epithelia during Xenopus development., Cornish JA., Dev Biol. March 1, 1992; 150 (1): 108-20.   


Expression of olfactory receptors in Xenopus oocytes., Dahmen N., J Neurochem. March 1, 1992; 58 (3): 1176-9.


Peripheral origin of olfactory nerve fibers by-passing the olfactory bulb in Xenopus laevis., Hofmann MH., Dev Biol. August 28, 1992; 589 (1): 161-3.


Morphological and quantitative evaluation of olfactory bulb development in Xenopus after olfactory placode transplantation., Byrd CA., J Comp Neurol. May 22, 1993; 331 (4): 551-63.


A novel GABA receptor on bipolar cell terminals in the tiger salamander retina., Lukasiewicz PD., J Neurosci. March 1, 1994; 14 (3 Pt 1): 1202-12.


A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP., Liman ER., Neuron. September 1, 1994; 13 (3): 611-21.


Distribution and morphology of sacral spinal cord neurons innervating pelvic structures in Xenopus laevis., Campbell HL., J Comp Neurol. September 22, 1994; 347 (4): 619-27.


Differential expression of two cell surface proteins, neuropilin and plexin, in Xenopus olfactory axon subclasses., Satoda M., J Neurosci. January 1, 1995; 15 (1 Pt 2): 942-55.   


A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors., Gordon SE., Neuron. January 1, 1995; 14 (1): 177-83.


Combinatorial diffusion assay used to identify topically active melanocyte-stimulating hormone receptor antagonists., Quillan JM., Proc Natl Acad Sci U S A. March 28, 1995; 92 (7): 2894-8.   


Responses recorded from the frog olfactory epithelium after stimulation with R(+)- and S(-)-nicotine., Thürauf N., Chem Senses. June 1, 1995; 20 (3): 337-44.


The number and distribution of bipolar to ganglion cell synapses in the inner plexiform layer of the anuran retina., Buzás P., Vis Neurosci. January 1, 1996; 13 (6): 1099-107.


Development of the olfactory epithelium and vomeronasal organ in the Japanese reddish frog, Rana japonica., Taniguchi K., J Vet Med Sci. January 1, 1996; 58 (1): 7-15.


Developmental expression of a neuron-specific beta-tubulin in frog (Xenopus laevis): a marker for growing axons during the embryonic period., Moody SA., J Comp Neurol. January 8, 1996; 364 (2): 219-30.   


Bulbar representation of the 'water-nose' during Xenopus ontogeny., Meyer DL., Neurosci Lett. December 13, 1996; 220 (2): 109-12.


Cellular and molecular interactions in the development of the Xenopus olfactory system., Reiss JO., Semin Cell Dev Biol. April 1, 1997; 8 (2): 171-9.   


Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors., Cau E., Development. April 1, 1997; 124 (8): 1611-21.


Thrombospondins in early Xenopus embryos: dynamic patterns of expression suggest diverse roles in nervous system, notochord, and muscle development., Urry LA., Dev Dyn. April 1, 1998; 211 (4): 390-407.   


Two olfactory marker proteins in Xenopus laevis., Rössler P., J Comp Neurol. June 8, 1998; 395 (3): 273-80.   


Ultrastructure of the olfactory organ in the clawed frog, Xenopus laevis, during larval development and metamorphosis., Hansen A., J Comp Neurol. August 24, 1998; 398 (2): 273-88.


Fine structure of three types of olfactory organs in Xenopus laevis., Oikawa T., Anat Rec. October 1, 1998; 252 (2): 301-10.


Molecular cloning and developmental expression of the Xenopus homolog of integrin alpha 4., Whittaker CA., Ann N Y Acad Sci. October 23, 1998; 857 56-73.


Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis., Brown NL., Development. December 1, 1998; 125 (23): 4821-33.   


Truncation releases olfactory receptors from the endoplasmic reticulum of heterologous cells., Gimelbrant AA., J Neurochem. June 1, 1999; 72 (6): 2301-11.


Responses of Xenopus laevis water nose to water-soluble and volatile odorants., Iida A., J Gen Physiol. July 1, 1999; 114 (1): 85-92.   


Proteinase-activated receptor 2 (PAR(2)): development of a ligand-binding assay correlating with activation of PAR(2) by PAR(1)- and PAR(2)-derived peptide ligands., Al-Ani B., J Pharmacol Exp Ther. August 1, 1999; 290 (2): 753-60.


Differential antigen expression during metamorphosis in the tripartite olfactory system of the African clawed frog, Xenopus laevis., Petti MA., Cell Tissue Res. September 1, 1999; 297 (3): 383-96.


The role of the brain in metamorphosis of the olfactory epithelium in the frog, Xenopus laevis., Higgs DM., Brain Res Dev Brain Res. December 10, 1999; 118 (1-2): 185-95.


OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways., Hata A., Cell. January 21, 2000; 100 (2): 229-40.   


Expression patterns of glycoconjugates in the three distinctive olfactory pathways of the clawed frog, Xenopus laevis., Saito S., J Vet Med Sci. February 1, 2000; 62 (2): 153-9.


Responses to putative second messengers and odorants in water nose olfactory neurons of Xenopus laevis., Iida A., Chem Senses. February 1, 2000; 25 (1): 55-9.


Expression of two novel mouse Iroquois homeobox genes during neurogenesis., Cohen DR., Mech Dev. March 1, 2000; 91 (1-2): 317-21.


Xenopus laevis gelatinase B (Xmmp-9): development, regeneration, and wound healing., Carinato ME., Dev Dyn. April 1, 2000; 217 (4): 377-87.   


Expression of neural properties in olfactory cytokeratin-positive basal cell line., Satoh M., Brain Res Dev Brain Res. June 30, 2000; 121 (2): 219-22.


Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons., Gervasi C., J Comp Neurol. July 31, 2000; 423 (3): 512-31.   


Mutation of a single residue in the S2-S3 loop of CNG channels alters the gating properties and sensitivity to inhibitors., Crary JI., J Gen Physiol. December 1, 2000; 116 (6): 769-80.   

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???