Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (328) Expression Attributions Wiki
XB-ANAT-452

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

GABA and dopamine act directly on melanotropes of Xenopus to inhibit MSH secretion., Verburg-Van Kemenade BM., Brain Res Bull. November 1, 1986; 17 (5): 697-704.


Pigment cell pattern formation in amphibian embryos: a reexamination of the dopa technique., Tucker RP., J Exp Zool. November 1, 1986; 240 (2): 173-82.


Pertussis toxin blocks melatonin-induced pigment aggregation in Xenopus dermal melanophores., White BH., J Comp Physiol B. January 1, 1987; 157 (2): 153-9.


Melanophore differentiation in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Pigment Cell Res. January 1, 1987; 1 (3): 197-201.


Studies on cellular adhesion of Xenopus laevis melanophores: modulation of cell-cell and cell-substratum adhesion in vitro by endogenous Xenopus galactoside-binding lectin., Milos NC., Pigment Cell Res. January 1, 1987; 1 (3): 188-96.


Differentiation of neural crest cells of Xenopus laevis in clonal culture., Akira E., Pigment Cell Res. January 1, 1987; 1 (1): 28-36.


Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 69-76.


Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis., Martens GJ., Biochem Biophys Res Commun. March 13, 1987; 143 (2): 678-84.      


The effects of various nutritional supplements on the growth, migration and differentiation of Xenopus laevis neural crest cells in vitro., Wilson HC., In Vitro Cell Dev Biol. May 1, 1987; 23 (5): 323-31.


N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process., Verburg-van Kemenade BM., Neuroendocrinology. October 1, 1987; 46 (4): 289-96.


Xenopus tadpole melanophores are controlled by dark and light and melatonin without influence of time of day., Binkley S., J Pineal Res. January 1, 1988; 5 (1): 87-97.


A ventrally localized inhibitor of melanization in Xenopus laevis skin., Fukuzawa T., Dev Biol. September 1, 1988; 129 (1): 25-36.


Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor., Fukuzawa T., Pigment Cell Res. January 1, 1989; 2 (3): 171-81.


Melanin concentrating hormone. V. Isolation and characterization of alpha-melanocyte-stimulating hormone from frog pituitary glands., Tonon MC., Life Sci. January 1, 1989; 45 (13): 1155-61.


Particular processing of pro-opiomelanocortin in Xenopus laevis intermediate pituitary. Sequencing of alpha- and beta-melanocyte-stimulating hormones., Rouillé Y., FEBS Lett. March 13, 1989; 245 (1-2): 215-8.


Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone., van Zoest ID., Gen Comp Endocrinol. October 1, 1989; 76 (1): 19-28.


Ontogenetic development of S-antigen- and rod-opsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms., Korf B., Cell Tissue Res. November 1, 1989; 258 (2): 319-29.


Studies on cellular adhesion of Xenopus laevis melanophores: pigment pattern formation and alteration in vivo by endogenous galactoside-binding lectin or its sugar hapten inhibitor., Frunchak YN., Pigment Cell Res. January 1, 1990; 3 (2): 101-14.


GABA and neuropeptide Y co-exist in axons innervating the neurointermediate lobe of the pituitary of Xenopus laevis--an immunoelectron microscopic study., de Rijk EP., Neuroscience. January 1, 1990; 38 (2): 495-502.


Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation., de Rijk EP., Gen Comp Endocrinol. July 1, 1990; 79 (1): 74-82.


Differential mechanisms for the N-acetylation of alpha-melanocyte-stimulating hormone and beta-endorphin in the intermediate pituitary of the frog, Xenopus laevis., Dores RM., Neuroendocrinology. January 1, 1991; 53 (1): 54-62.


Coordinated expression of 7B2 and alpha MSH in the melanotrope cells of Xenopus laevis. An immunocytochemical and in situ hybridization study., Ayoubi TA., Cell Tissue Res. May 1, 1991; 264 (2): 329-34.


Thyrotropin-releasing hormone facilitates display of reproductive behavior and locomotor behavior in an amphibian., Taylor JA., Horm Behav. June 1, 1991; 25 (2): 128-36.


Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost., Clarke JD., Development. June 1, 1991; 112 (2): 499-516.                        


Characterization of chicken ACTH and alpha-MSH: the primary sequence of chicken ACTH is more similar to Xenopus ACTH than to other avian ACTH., Hayashi H., Gen Comp Endocrinol. June 1, 1991; 82 (3): 434-43.


Immunoblotting technique to study release of melanophore-stimulating hormone from individual melanotrope cells of the intermediate lobe of Xenopus laevis., de Rijk EP., Cytometry. January 1, 1992; 13 (8): 863-71.


Comparative structural analysis of the transcriptionally active proopiomelanocortin genes A and B of Xenopus laevis., Deen PM., Mol Biol Evol. May 1, 1992; 9 (3): 483-94.


The effects of melanocortins and electrical fields on neuronal growth., McCaig CD., Exp Neurol. May 1, 1992; 116 (2): 172-9.


Structure and expression of Xenopus prohormone convertase PC2., Braks JA., FEBS Lett. June 22, 1992; 305 (1): 45-50.


Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis., de Koning HP., Gen Comp Endocrinol. September 1, 1992; 87 (3): 394-401.


The protein-phosphatase inhibitor okadaic acid mimics MSH-induced and melatonin-reversible melanosome dispersion in Xenopus laevis melanophores., Cozzi B., Pigment Cell Res. September 1, 1992; 5 (3): 148-54.


Intrinsic pigment-cell stimulating activity in the catfish integument., Zuasti A., Pigment Cell Res. November 1, 1992; 5 (5 Pt 1): 253-62.


A method for evaluating the effects of ligands upon Gs protein-coupled receptors using a recombinant melanophore-based bioassay., Potenza MN., Anal Biochem. November 1, 1992; 206 (2): 315-22.


A rapid quantitative bioassay for evaluating the effects of ligands upon receptors that modulate cAMP levels in a melanophore cell line., Potenza MN., Pigment Cell Res. December 1, 1992; 5 (6): 372-8.


Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores., Sugden D., J Cell Biol. December 1, 1992; 119 (6): 1515-21.


Melatonin-induced desensitization in amphibian melanophores., Rollag MD., J Exp Zool. April 1, 1993; 265 (5): 488-95.


Probing the functions of endogenous lectins: effects of a monoclonal antibody against the neural crest-stage lectin of Xenopus laevis on trunk development., Milos NC., J Exp Zool. July 1, 1993; 266 (3): 240-7.


Dual action of GABAA receptors on the secretory process of melanotrophs of Xenopus laevis., Jenks BG., Neuroendocrinology. July 1, 1993; 58 (1): 80-5.


Immunocytochemistry and in situ hybridization of neuropeptide Y in the hypothalamus of Xenopus laevis in relation to background adaptation., Tuinhof R., Neuroscience. August 1, 1993; 55 (3): 667-75.


Cloning and characterization of an endothelin-3 specific receptor (ETC receptor) from Xenopus laevis dermal melanophores., Karne S., J Biol Chem. September 5, 1993; 268 (25): 19126-33.                


Basic fibroblast growth factor induces differentiation of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula., Kengaku M., Development. December 1, 1993; 119 (4): 1067-78.


Characterization of a serotonin receptor endogenous to frog melanophores., Potenza MN., Naunyn Schmiedebergs Arch Pharmacol. January 1, 1994; 349 (1): 11-9.


Functional expression and characterization of human D2 and D3 dopamine receptors., Potenza MN., J Neurosci. March 1, 1994; 14 (3 Pt 2): 1463-76.


N-acyl-3-amino-5-methoxychromans: a new series of non-indolic melatonin analogues., Sugden D., Eur J Pharmacol. March 21, 1994; 254 (3): 271-5.


Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis., Scheenen WJ., Pflugers Arch. June 1, 1994; 427 (3-4): 244-51.


Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study., Tuinhof R., Neuroscience. July 1, 1994; 61 (2): 411-20.


The secretion of alpha-MSH from xenopus melanotropes involves calcium influx through omega-conotoxin-sensitive voltage-operated calcium channels., Scheenen WJ., J Neuroendocrinol. August 1, 1994; 6 (4): 457-64.


A rapid bioassay for platelet-derived growth factor beta-receptor tyrosine kinase function., Graminski GF., Biotechnology (N Y). October 1, 1994; 12 (10): 1008-11.


Discovery and structure-function analysis of alpha-melanocyte-stimulating hormone antagonists., Jayawickreme CK., J Biol Chem. November 25, 1994; 269 (47): 29846-54.


Structural requirements at the melatonin receptor., Sugden D., Br J Pharmacol. February 1, 1995; 114 (3): 618-23.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 ???pagination.result.next???