Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3925) Expression Attributions Wiki
XB-ANAT-50

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Embryonic development of Xenopus studied in a cell culture system with tissue-specific monoclonal antibodies., Mitani S., Development. January 1, 1989; 105 (1): 53-9.   


Induction and the organization of the body plan in Xenopus development., Cooke J., Ciba Found Symp. January 1, 1989; 144 187-201; discussion 201-7, 208-11.


Localization of mRNA and axis formation during Xenopus embryogenesis., Melton DA., Ciba Found Symp. January 1, 1989; 144 16-29; discussion 29-36, 92-8.


Inducing factors and the control of mesodermal pattern in Xenopus laevis., Smith JC., Development. January 1, 1989; 107 Suppl 149-59.


The role of fibroblast growth factor in early Xenopus development., Slack JM., Development. January 1, 1989; 107 Suppl 141-8.


Identification and regulation of the eukaryotic hyaluronate synthase., Prehm P., Ciba Found Symp. January 1, 1989; 143 21-30; discussion 30-40, 281-5.


Regulation of c-fos messenger ribonucleic acid by fibroblast growth factor in cultured Sertoli cells., Smith EP., Ann N Y Acad Sci. January 1, 1989; 564 132-9.


Fibroblast growth factor and transforming growth factor beta in early embryonic development., Paterno GD., Prog Growth Factor Res. January 1, 1989; 1 (2): 79-88.


Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus-derived inducing factor: experiments testing models for the normal organization of mesoderm., Cooke J., Dev Biol. February 1, 1989; 131 (2): 383-400.


Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H., Development. February 1, 1989; 105 (2): 299-307.   


Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H., Development. February 1, 1989; 105 (2): 279-98.   


Mediolateral cell intercalation in the dorsal, axial mesoderm of Xenopus laevis., Keller R., Dev Biol. February 1, 1989; 131 (2): 539-49.


Loss of competence in amphibian induction can take place in single nondividing cells., Grainger RM., Proc Natl Acad Sci U S A. March 1, 1989; 86 (6): 1900-4.


Dorsalization of mesoderm induction by lithium., Kao KR., Dev Biol. March 1, 1989; 132 (1): 81-90.


[Experiments on the excitability of the cultured embryonic epidermis cells of Cynops orientalis]., Wu WL., Shi Yan Sheng Wu Xue Bao. March 1, 1989; 22 (1): 111-22.


Potentiation by the lithium ion of morphogenetic responses to a Xenopus inducing factor., Cooke J., Development. March 1, 1989; 105 (3): 549-58.


Amphibian (urodele) myotomes display transitory anterior/posterior and medial/lateral differentiation patterns., Neff AW., Dev Biol. April 1, 1989; 132 (2): 529-43.   


The specification of heart mesoderm occurs during gastrulation in Xenopus laevis., Sater AK., Development. April 1, 1989; 105 (4): 821-30.   


Differential gene expression in the anterior neural plate during gastrulation of Xenopus laevis., Jamrich M., Development. April 1, 1989; 105 (4): 779-86.   


XlHbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm., Wright CV., Development. April 1, 1989; 105 (4): 787-94.   


Biosynthesis of sulfated proteoglycans in amphibian embryonal cells., Løvtrup-Rein H., Biosci Rep. April 1, 1989; 9 (2): 213-22.


Involvement of the Xenopus homeobox gene Xhox3 in pattern formation along the anterior-posterior axis., Ruiz i Altaba A., Cell. April 21, 1989; 57 (2): 317-26.


Determination of axial polarity in the vertebrate embryo: homeodomain proteins and homeogenetic induction., De Robertis EM., Cell. April 21, 1989; 57 (2): 189-91.   


Bimodal and graded expression of the Xenopus homeobox gene Xhox3 during embryonic development., Ruiz i Altaba A., Development. May 1, 1989; 106 (1): 173-83.   


Complementary homeo protein gradients in developing limb buds., Oliver G., Genes Dev. May 1, 1989; 3 (5): 641-50.   


Analysis of competence: receptors for fibroblast growth factor in early Xenopus embryos., Gillespie LL., Development. May 1, 1989; 106 (1): 203-8.


Mesoderm-inducing properties of INT-2 and kFGF: two oncogene-encoded growth factors related to FGF., Paterno GD., Development. May 1, 1989; 106 (1): 79-83.


A mesoderm-inducing factor from a Xenopus laevis cell line : Chemical properties and relation to the vegetalizing factor from chicken embryos., Grunz H., Rouxs Arch Dev Biol. May 1, 1989; 198 (1): 8-13.


Induction of mesoderm by a viral oncogene in early Xenopus embryos., Whitman M., Science. May 19, 1989; 244 (4906): 803-6.


Mesoderm induction by transforming growth factor beta: medium conditioned by TGF-beta-treated ectoderm enhances the inducing activity., Knöchel W., Naturwissenschaften. June 1, 1989; 76 (6): 270-2.


Expression of myosin heavy chain transcripts during Xenopus laevis development., Radice GP., Dev Biol. June 1, 1989; 133 (2): 562-8.


Expression of cell adhesion molecule E-cadherin in Xenopus embryos begins at gastrulation and predominates in the ectoderm., Choi YS., J Cell Biol. June 1, 1989; 108 (6): 2449-58.


Specification and Establishment of Dorsal-Ventral Polarity in Eggs and Embryos of Xenopus laevis: (body plan specification/dorsal-ventral polarity/Xenopus laevis/"antero-dorsal structure-forming activity")., Wakahara M., Dev Growth Differ. June 1, 1989; 31 (3): 197-207.


Purified maturation promoting factor phosphorylates pp60c-src at the sites phosphorylated during fibroblast mitosis., Shenoy S., Cell. June 2, 1989; 57 (5): 763-74.


Mix.1, a homeobox mRNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos., Rosa FM., Cell. June 16, 1989; 57 (6): 965-74.


Xenopus mesoderm induction: evidence for early size control and partial autonomy for pattern development by onset of gastrulation., Cooke J., Development. July 1, 1989; 106 (3): 519-29.


Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos., Brivanlou AH., Development. July 1, 1989; 106 (3): 611-7.   


Retinoic acid causes an anteroposterior transformation in the developing central nervous system., Durston AJ., Nature. July 13, 1989; 340 (6229): 140-4.


Progressive determination during formation of the anteroposterior axis in Xenopus laevis., Sive HL., Cell. July 14, 1989; 58 (1): 171-80.


Regional identity is established before gastrulation in the Xenopus embryo., Turner A., J Exp Zool. August 1, 1989; 251 (2): 245-52.


Cell intercalation during notochord development in Xenopus laevis., Keller R., J Exp Zool. August 1, 1989; 251 (2): 134-54.


Clonal analysis of mesoderm induction in Xenopus laevis., Godsave SF., Dev Biol. August 1, 1989; 134 (2): 486-90.


Localized synthesis of the Vg1 protein during early Xenopus development., Tannahill D., Development. August 1, 1989; 106 (4): 775-85.


Cellular contacts required for neural induction in Xenopus embryos: evidence for two signals., Dixon JE., Development. August 1, 1989; 106 (4): 749-57.


Autonomous death of amphibian (Xenopus laevis) cranial myotomes., Chung HM., J Exp Zool. September 1, 1989; 251 (3): 290-9.


The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo., Messenger NJ., Development. September 1, 1989; 107 (1): 43-54.   


Mesoderm induction by the mesoderm of Xenopus neurulae., Represa J., Int J Dev Biol. September 1, 1989; 33 (3): 397-401.


Expression of nicotinic acetylcholine receptors in aneural Xenopus embryos., Owens JL., Dev Biol. September 1, 1989; 135 (1): 12-9.


Interaction between peptide growth factors and homoeobox genes in the establishment of antero-posterior polarity in frog embryos., Ruiz i Altaba A., Nature. September 7, 1989; 341 (6237): 33-8.


Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis., McMahon AP., Cell. September 22, 1989; 58 (6): 1075-84.   

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???