Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (726) Expression Attributions Wiki
XB-ANAT-3990

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 5 6 7 8 9 10 11 12 13 14 15

Sort Newest To Oldest Sort Oldest To Newest

Ontogeny and tissue distribution of leukocyte-common antigen bearing cells during early development of Xenopus laevis., Ohinata H., Development. November 1, 1989; 107 (3): 445-52.              


Interference with function of a homeobox gene in Xenopus embryos produces malformations of the anterior spinal cord., Wright CV., Cell. October 6, 1989; 59 (1): 81-93.              


XlHbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm., Wright CV., Development. April 1, 1989; 105 (4): 787-94.          


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


A gradient of homeodomain protein in developing forelimbs of Xenopus and mouse embryos., Oliver G., Cell. December 23, 1988; 55 (6): 1017-24.        


Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers., Krotoski DM., Dev Biol. May 1, 1988; 127 (1): 119-32.


Dorsal and ventral cells of cleavage-stage Xenopus embryos show the same ability to induce notochord and somite formation., Pierce KE., Dev Biol. April 1, 1988; 126 (2): 228-32.


The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence., Cooke J., Development. January 1, 1988; 102 (1): 85-99.          


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J., Development. December 1, 1987; 101 (4): 893-908.            


Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis., Levi G., J Cell Biol. November 1, 1987; 105 (5): 2359-72.                  


Fate map for the 32-cell stage of Xenopus laevis., Dale L., Development. April 1, 1987; 99 (4): 527-51.                


A possible role of the glomus cell in controlling vascular tone of the carotid labyrinth of Xenopus laevis., Kusakabe T., Tohoku J Exp Med. April 1, 1987; 151 (4): 395-408.


The midblastula cell cycle transition and the character of mesoderm in u.v.-induced nonaxial Xenopus development., Cooke J., Development. February 1, 1987; 99 (2): 197-210.              


Principles of organization of the vertebrate olfactory glomerulus: an hypothesis., Graziadei PP., Neuroscience. December 1, 1986; 19 (4): 1025-35.


Regional specificity of glycoconjugates in Xenopus and axolotl embryos., Slack JM., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 137-53.      


Different modes of pronephric duct origin among vertebrates., Poole TJ., Scan Electron Microsc. January 1, 1984; (Pt 1): 475-82.


[Glomus cell in controlling vascular tone of the carotid labyrinth (Xenopus laevis)]., Kusakabe T., Nihon Seirigaku Zasshi. January 1, 1984; 46 (10): 623-33.


Evidence for specific feedback signals underlying pattern control during vertebrate embryogenesis., Cooke J., J Embryol Exp Morphol. August 1, 1983; 76 95-114.


Change in the differentiation pattern ofXenopus laevis ectoderm by variation of the incubation time and concentration of vegetalizing factor., Grunz H., Wilehm Roux Arch Dev Biol. May 1, 1983; 192 (3-4): 130-137.


T-lymphocyte and B-lymphocyte dichotomy in anuran amphibians: I. T-lymphocyte proportions, distribution and ontogeny, as measured by E-rosetting, nylon wool adherence, postmetamorphic thymectomy, and non-specific esterase staining., Klempau AE., Dev Comp Immunol. January 1, 1983; 7 (1): 99-110.


The glomus cell of the carotid labyrinth of Xenopus laevis., Ishii K., Cell Tissue Res. January 1, 1982; 224 (2): 459-63.


The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs., Gurdon JB., J Embryol Exp Morphol. August 1, 1975; 34 (1): 93-112.        


An histochemical investigation of acid phosphatase activity in the pronephros of the developing Xenopus laevis tadpole., Goldin G., Acta Embryol Exp (Palermo). January 1, 1973; 1 31-9.


Stimulation of cell division in pronephros of embryonic grafts following partial nephrectomy in the host (Xenopus laevis)., Chopra DP., J Embryol Exp Morphol. November 1, 1970; 24 (3): 525-33.


ORIGIN OF THE PRONEPHRIC DUCT IN XENOPUS LAEVIS., FOX H., Arch Biol (Liege). January 1, 1964; 75 245-51.


Experimental studies on the development of the pronephric duct in anuran embryos., Tung TC., J Anat. January 1, 1944; 78 (Pt 1-2): 52-7.

???pagination.result.page??? ???pagination.result.prev??? 5 6 7 8 9 10 11 12 13 14 15