Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (485) Attributions Wiki
XB-STAGE-46

Papers associated with NF stage 28

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Retinal ganglion cells: specification of central connections in larval Xenopus laevis., Jacobson M., Science. March 3, 1967; 155 (766): 1106-8.


Development and stability of postional information in Xenopus retinal ganglion cells., Hunt RK, Jacobson M., Proc Natl Acad Sci U S A. April 1, 1972; 69 (4): 780-3.


Specification of positional information in retinal ganglion cells of Xenopus laevis: intra-ocular control of the time of specification., Hunt RK, Jacobson M., Proc Natl Acad Sci U S A. September 1, 1974; 71 (9): 3616-20.


Developmental programming for retinotectal patterns., Hunt RK., Ciba Found Symp. January 1, 1975; 0 (29): 131-59.


The distribution of non-synaptic intercellular junctions during neurone differentiation in the developing spinal cord of the clawed toad., Hayes BP, Roberts A., J Embryol Exp Morphol. April 1, 1975; 33 (2): 403-17.


Myogenesis in the trunk and leg during development of the tadpole of Xenopus laevis (Daudin 1802)., Muntz L., J Embryol Exp Morphol. June 1, 1975; 33 (3): 757-74.


Ontogeny of the retina and optic nerve in Xenopus laevis. II. Ontogeny of the optic fiber pattern in the retina., Grant P, Rubin E., J Comp Neurol. February 15, 1980; 189 (4): 671-98.


Development of the marginal zone in the rhombenecephalon of Xenopus laevis., Kevetter GA, Lasek RJ., Dev Biol. June 1, 1982; 256 (2): 195-208.


Development of the orientation of the visuo-tectal map in Xenopus., Feldman JD, Gaze RM, Keating MJ., Dev Biol. February 1, 1983; 282 (3): 269-77.


The positional coding system in the early eye rudiment of Xenopus laevis, and its modification after grafting operations., Cooke J, Gaze RM., J Embryol Exp Morphol. October 1, 1983; 77 53-71.


Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis., van Mier P, ten Donkelaar HJ., Anat Embryol (Berl). January 1, 1984; 170 (3): 295-306.


Developmental changes in the pattern of larval beta-globin gene expression in Xenopus laevis. Identification of two early larval beta-globin mRNA sequences., Banville D, Williams JG., J Mol Biol. August 20, 1985; 184 (4): 611-20.


The development of serotonergic raphespinal projections in Xenopus laevis., van Mier P, Joosten HW, van Rheden R, ten Donkelaar HJ., Int J Dev Neurosci. January 1, 1986; 4 (5): 465-75.


Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos., Jacobson M, Rutishauser U., Dev Biol. August 1, 1986; 116 (2): 524-31.            


Expression of the Ca2+-binding protein, parvalbumin, during embryonic development of the frog, Xenopus laevis., Kay BK, Shah AJ, Halstead WE., J Cell Biol. April 1, 1987; 104 (4): 841-7.              


Cell patterning in pigment-chimeric eyes in Xenopus: germinal transplants and their contributions to growth of the pigmented retinal epithelium., Hunt RK, Cohen JS, Mason BJ., Proc Natl Acad Sci U S A. May 1, 1987; 84 (10): 3302-6.          


Development of substance P-like immunoreactivity in Xenopus embryos., Gallagher BC, Moody SA., J Comp Neurol. June 8, 1987; 260 (2): 175-85.


Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis., Levi G, Crossin KL, Edelman GM., J Cell Biol. November 1, 1987; 105 (5): 2359-72.                  


Positional variations in germinal cell growth in pigment-chimeric eyes of Xenopus: posterior half of the developing eye studied in genetic chimerae and in computer simulations., Hunt RK, Bodenstein L, Cohen JS, Sidman RL., Proc Natl Acad Sci U S A. May 1, 1988; 85 (10): 3459-63.


Development of myotomal cells in Xenopus laevis larvae., Huang CL, Hockaday AR., J Anat. August 1, 1988; 159 129-36.


The expression of epidermal antigens in Xenopus laevis., Itoh K, Yamashita A, Kubota HY., Development. September 1, 1988; 104 (1): 1-14.                        


Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia., Fouquet B, Herrmann H, Franz JK, Franke WW., Development. December 1, 1988; 104 (4): 533-48.                      


Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation., van Mier P, Armstrong J, Roberts A., Neuroscience. January 1, 1989; 32 (1): 113-26.


Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H, Fouquet B, Franke WW., Development. February 1, 1989; 105 (2): 299-307.              


Developmental changes in the open time and conductance of acetylcholine receptors in aneural cultured Xenopus myocytes treated with cycloheximide or tunicamycin., Carlson CG, Leonard RJ., Brain Res Dev Brain Res. March 1, 1989; 46 (1): 61-8.


Spatial aspects of neural induction in Xenopus laevis., Jones EA, Woodland HR., Development. December 1, 1989; 107 (4): 785-91.          


Molecular approach to dorsoanterior development in Xenopus laevis., Sato SM, Sargent TD., Dev Biol. January 1, 1990; 137 (1): 135-41.          


Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis., LaFlamme SE, Dawid IB., Dev Biol. February 1, 1990; 137 (2): 414-8.        


The restriction of the heart morphogenetic field in Xenopus laevis., Sater AK, Jacobson AG., Dev Biol. August 1, 1990; 140 (2): 328-36.


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP, Loh YP., Development. November 1, 1990; 110 (3): 747-57.              


A retinoic acid receptor expressed in the early development of Xenopus laevis., Ellinger-Ziegelbauer H, Dreyer C., Genes Dev. January 1, 1991; 5 (1): 94-104.              


The early development of the frog retinotectal projection., Taylor JS., Development. January 1, 1991; Suppl 2 95-104.            


Expression of a leukocyte-specific antigen during ontogeny in Xenopus laevis., Smith PB, Turpen JB., Dev Immunol. January 1, 1991; 1 (4): 295-307.


Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning., Drysdale TA, Elinson RP., Development. February 1, 1991; 111 (2): 469-78.            


Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum., Davis CA, Holmyard DP, Millen KJ, Joyner AL., Development. February 1, 1991; 111 (2): 287-98.          


Cephalic expression and molecular characterization of Xenopus En-2., Hemmati-Brivanlou A, de la Torre JR, Holt C, Harland RM., Development. March 1, 1991; 111 (3): 715-24.    


The stopping response of Xenopus laevis embryos: behaviour, development and physiology., Boothby KM, Roberts A., J Comp Physiol A. February 1, 1992; 170 (2): 171-80.


Expression of tenascin mRNA in mesoderm during Xenopus laevis embryogenesis: the potential role of mesoderm patterning in tenascin regionalization., Umbhauer M, Riou JF, Spring J, Smith JC, Boucaut JC., Development. September 1, 1992; 116 (1): 147-57.            


The armadillo homologs beta-catenin and plakoglobin are differentially expressed during early development of Xenopus laevis., DeMarais AA, Moon RT., Dev Biol. October 1, 1992; 153 (2): 337-46.          


Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus., Christian JL, Moon RT., Genes Dev. January 1, 1993; 7 (1): 13-28.              


Integrin alpha subunit mRNAs are differentially expressed in early Xenopus embryos., Whittaker CA, DeSimone DW., Development. April 1, 1993; 117 (4): 1239-49.          


XASH-3, a novel Xenopus achaete-scute homolog, provides an early marker of planar neural induction and position along the mediolateral axis of the neural plate., Zimmerman K, Shih J, Bars J, Collazo A, Anderson DJ., Development. September 1, 1993; 119 (1): 221-32.                


Expression of LIM class homeobox gene Xlim-3 in Xenopus development is limited to neural and neuroendocrine tissues., Taira M, Hayes WP, Otani H, Dawid IB., Dev Biol. September 1, 1993; 159 (1): 245-56.              


Integrin expression in early amphibian embryos: cDNA cloning and characterization of Xenopus beta 1, beta 2, beta 3, and beta 6 subunits., Ransom DG, Hens MD, DeSimone DW., Dev Biol. November 1, 1993; 160 (1): 265-75.                      


Xwnt-11: a maternally expressed Xenopus wnt gene., Ku M, Melton DA., Development. December 1, 1993; 119 (4): 1161-73.              


XFKH2, a Xenopus HNF-3 alpha homologue, exhibits both activin-inducible and autonomous phases of expression in early embryos., Bolce ME, Hemmati-Brivanlou A, Harland RM., Dev Biol. December 1, 1993; 160 (2): 413-23.              


Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip., Gont LK, Steinbeisser H, Blumberg B, de Robertis EM., Development. December 1, 1993; 119 (4): 991-1004.                


Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization., Hume CR, Dodd J., Development. December 1, 1993; 119 (4): 1147-60.        


Morphogenesis of catecholaminergic interneurons in the frog spinal cord., Heathcote RD, Chen A., J Comp Neurol. April 1, 1994; 342 (1): 57-68.


Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation., Taira M, Otani H, Jamrich M, Dawid IB., Development. June 1, 1994; 120 (6): 1525-36.        

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???