Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (642) Expression Attributions Wiki
XB-ANAT-1586

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

"Optical patch-clamping": single-channel recording by imaging Ca2+ flux through individual muscle acetylcholine receptor channels., Demuro A., J Gen Physiol. September 1, 2005; 126 (3): 179-92.                    


The role of combinational coding by homeodomain and bHLH transcription factors in retinal cell fate specification., Wang JC., Dev Biol. September 1, 2005; 285 (1): 101-15.      


The doublesex-related gene, XDmrt4, is required for neurogenesis in the olfactory system., Huang X., Proc Natl Acad Sci U S A. August 9, 2005; 102 (32): 11349-54.                        


Binding of hnRNP L to the pre-mRNA processing enhancer of the herpes simplex virus thymidine kinase gene enhances both polyadenylation and nucleocytoplasmic export of intronless mRNAs., Guang S., Mol Cell Biol. August 1, 2005; 25 (15): 6303-13.


Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes., Schlosser G., J Exp Zool B Mol Dev Evol. July 15, 2005; 304 (4): 347-99.


Phylogenomic analysis and expression patterns of large Maf genes in Xenopus tropicalis provide new insights into the functional evolution of the gene family in osteichthyans., Coolen M., Dev Genes Evol. July 1, 2005; 215 (7): 327-39.


The 5'-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf., Yoshida T., Nucleic Acids Res. June 21, 2005; 33 (11): 3465-78.                  


Homer expression in the Xenopus tadpole nervous system., Foa L., J Comp Neurol. June 20, 2005; 487 (1): 42-53.                    


Novel soluble molecule, Akhirin, is expressed in the embryonic chick eyes and exhibits heterophilic cell-adhesion activity., Ahsan M., Dev Dyn. May 1, 2005; 233 (1): 95-104.


Induction and specification of the vertebrate ectodermal placodes: precursors of the cranial sensory organs., Brugmann SA., Biol Cell. May 1, 2005; 97 (5): 303-19.


Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina., Van Raay TJ., Neuron. April 7, 2005; 46 (1): 23-36.                        


Requirement for betaB1-crystallin promoter of Xenopus laevis in embryonic lens development and lens regeneration., Mizuno N., Dev Growth Differ. April 1, 2005; 47 (3): 131-40.          


Regulation of aquaporin water permeability in the lens., Varadaraj K., Invest Ophthalmol Vis Sci. April 1, 2005; 46 (4): 1393-402.


Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling., Lupo G., Development. April 1, 2005; 132 (7): 1737-48.                    


Expression cloning screening of a unique and full-length set of cDNA clones is an efficient method for identifying genes involved in Xenopus neurogenesis., Voigt J., Mech Dev. March 1, 2005; 122 (3): 289-306.                                            


Generation of transgenic newt Cynops pyrrhogaster for regeneration study., Ueda Y., Genesis. February 1, 2005; 41 (2): 87-98.


Identification of DRG family regulatory proteins (DFRPs): specific regulation of DRG1 and DRG2., Ishikawa K., Genes Cells. February 1, 2005; 10 (2): 139-50.            


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development., Pohl BS., Gene. January 3, 2005; 344 21-32.      


Xenopus laevis FoxE1 is primarily expressed in the developing pituitary and thyroid., El-Hodiri HM., Int J Dev Biol. January 1, 2005; 49 (7): 881-4.            


Lens-forming competence in the epidermis of Xenopus laevis during development., Arresta E., J Exp Zool A Comp Exp Biol. January 1, 2005; 303 (1): 1-12.


MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1., Baldessari D., BMC Cell Biol. December 21, 2004; 5 (1): 48.              


Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor., Brugmann SA., Development. December 1, 2004; 131 (23): 5871-81.                    


Xenopus flotillin1, a novel gene highly expressed in the dorsal nervous system., Pandur PD., Dev Dyn. December 1, 2004; 231 (4): 881-7.  


Identification of Xenopus cyclin-dependent kinase inhibitors, p16Xic2 and p17Xic3., Daniels M., Gene. November 10, 2004; 342 (1): 41-7.                


Sequence and functional conservation of the intergenic region between the head-to-head genes encoding the small heat shock proteins alphaB-crystallin and HspB2 in the mammalian lineage., Doerwald L., J Mol Evol. November 1, 2004; 59 (5): 674-86.


Embryonic expression of pre-initiation DNA replication factors in Xenopus laevis., Walter BE., Gene Expr Patterns. November 1, 2004; 5 (1): 81-9.                                


Connexins are mechanosensitive., Bao L., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1389-95.


Exchange of gating properties between rat cx46 and chicken cx45.6., Tong JJ., Biophys J. October 1, 2004; 87 (4): 2397-406.


Localization of Mel1b melatonin receptor-like immunoreactivity in ocular tissues of Xenopus laevis., Wiechmann AF., Exp Eye Res. October 1, 2004; 79 (4): 585-94.                  


A Xenopus tribbles orthologue is required for the progression of mitosis and for development of the nervous system., Saka Y., Dev Biol. September 15, 2004; 273 (2): 210-25.                      


Pbx genes are required in Xenopus lens development., Morgan R., Int J Dev Biol. September 1, 2004; 48 (7): 623-7.


Temporal expression of L-Maf and RaxL in developing chicken retina are arranged into mosaic pattern., Ochi H., Gene Expr Patterns. September 1, 2004; 4 (5): 489-94.


Connexin 48.5 is required for normal cardiovascular function and lens development in zebrafish embryos., Cheng S., J Biol Chem. August 27, 2004; 279 (35): 36993-7003.


Expression patterns of Xenopus FGF receptor-like 1/nou-darake in early Xenopus development resemble those of planarian nou-darake and Xenopus FGF8., Hayashi S., Dev Dyn. August 1, 2004; 230 (4): 700-7.        


Early regeneration genes: Building a molecular profile for shared expression in cornea-lens transdifferentiation and hindlimb regeneration in Xenopus laevis., Wolfe AD., Dev Dyn. August 1, 2004; 230 (4): 615-29.        


Molecular anatomy of placode development in Xenopus laevis., Schlosser G., Dev Biol. July 15, 2004; 271 (2): 439-66.                          


Early expression of thyroid hormone receptor beta and retinoid X receptor gamma in the Xenopus embryo., Cossette SM., Differentiation. June 1, 2004; 72 (5): 239-49.            


FGF2 triggers iris-derived lens regeneration in newt eye., Hayashi T., Mech Dev. June 1, 2004; 121 (6): 519-26.


Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus., Kuroda H., PLoS Biol. May 1, 2004; 2 (5): E92.                


Isolation and developmental expression of Mitf in Xenopus laevis., Kumasaka M., Dev Dyn. May 1, 2004; 230 (1): 107-13.    


Regulated gene expression of hyaluronan synthases during Xenopus laevis development., Nardini M., Gene Expr Patterns. May 1, 2004; 4 (3): 303-8.        


Molecular cloning, functional analysis, and RNA expression analysis of connexin45.6: a zebrafish cardiovascular connexin., Christie TL., Am J Physiol Heart Circ Physiol. May 1, 2004; 286 (5): H1623-32.


Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis., Walter BE., Mol Vis. March 24, 2004; 10 186-98.


Roles of Maf family proteins in lens development., Reza HM., Dev Dyn. March 1, 2004; 229 (3): 440-8.


XSEB4R, a novel RNA-binding protein involved in retinal cell differentiation downstream of bHLH proneural genes., Boy S., Development. February 1, 2004; 131 (4): 851-62.                    


Regulation of vertebrate eye development by Rx genes., Bailey TJ., Int J Dev Biol. January 1, 2004; 48 (8-9): 761-70.    


From embryonic induction to cell lineages: revisiting old problems for modern study., Okada TS., Int J Dev Biol. January 1, 2004; 48 (8-9): 739-42.


Water permeability of C-terminally truncated aquaporin 0 (AQP0 1-243) observed in the aging human lens., Ball LE., Invest Ophthalmol Vis Sci. November 1, 2003; 44 (11): 4820-8.


Specification of the vertebrate eye by a network of eye field transcription factors., Zuber ME., Development. November 1, 2003; 130 (21): 5155-67.        

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???