Results 1 - 50 of 55 results
Dorsoventral patterning of the Xenopus eye involves differential temporal changes in the response of optic stalk and retinal progenitors to Hh signalling. , Wang X ., Neural Dev. March 20, 2015; 10 7.
Understanding early organogenesis using a simplified in situ hybridization protocol in Xenopus. , Deimling SJ., J Vis Exp. January 12, 2015; (95): e51526.
Stabilization of speckle-type POZ protein ( Spop) by Daz interacting protein 1 ( Dzip1) is essential for Gli turnover and the proper output of Hedgehog signaling. , Schwend T ., J Biol Chem. November 8, 2013; 288 (45): 32809-32820.
Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis. , El Yakoubi W., Stem Cells. December 1, 2012; 30 (12): 2784-95.
Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis. , Barnett C., Mech Dev. January 1, 2012; 129 (9-12): 324-38.
Loss of the BMP antagonist, SMOC-1, causes Ophthalmo-acromelic (Waardenburg Anophthalmia) syndrome in humans and mice. , Rainger J., PLoS Genet. July 1, 2011; 7 (7): e1002114.
Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of beta-catenin activation. , Juraver-Geslin HA ., Proc Natl Acad Sci U S A. February 8, 2011; 108 (6): 2288-93.
Sonic hedgehog is involved in formation of the ventral optic cup by limiting Bmp4 expression to the dorsal domain. , Zhao L., Mech Dev. January 1, 2010; 127 (1-2): 62-72.
FGFR3 expression in Xenopus laevis. , Pope AP., Gene Expr Patterns. January 1, 2010; 10 (2-3): 87-92.
The role of miR-124a in early development of the Xenopus eye. , Qiu R., Mech Dev. October 1, 2009; 126 (10): 804-16.
Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1. , Danesin C., Dev Cell. April 1, 2009; 16 (4): 576-87.
FGF receptor dependent regulation of Lhx9 expression in the developing nervous system. , Atkinson-Leadbeater K ., Dev Dyn. February 1, 2009; 238 (2): 367-75.
Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans. , Schlosser G ., Front Zool. June 23, 2008; 5 9.
Investigation of Frizzled-5 during embryonic neural development in mouse. , Burns CJ., Dev Dyn. June 1, 2008; 237 (6): 1614-26.
Alterations of rx1 and pax6 expression levels at neural plate stages differentially affect the production of retinal cell types and maintenance of retinal stem cell qualities. , Zaghloul NA., Dev Biol. June 1, 2007; 306 (1): 222-40.
Expression of Xenopus laevis Lhx2 during eye development and evidence for divergent expression among vertebrates. , Viczian AS ., Dev Dyn. April 1, 2006; 235 (4): 1133-41.
Dystroglycan is required for proper retinal layering. , Lunardi A ., Dev Biol. February 15, 2006; 290 (2): 411-20.
Dorsoventral patterning of the Xenopus eye: a collaboration of Retinoid, Hedgehog and FGF receptor signaling. , Lupo G., Development. April 1, 2005; 132 (7): 1737-48.
A gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis. , Noramly S., Mech Dev. March 1, 2005; 122 (3): 273-87.
Olfactory and lens placode formation is controlled by the hedgehog-interacting protein ( Xhip) in Xenopus. , Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.
Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. , Moore KB ., Dev Cell. January 1, 2004; 6 (1): 55-67.
Loss of maternal Smad5 in zebrafish embryos affects patterning and morphogenesis of optic primordia. , Hammerschmidt M., Dev Dyn. May 1, 2003; 227 (1): 128-33.
A novel function for Hedgehog signalling in retinal pigment epithelium differentiation. , Perron M ., Development. April 1, 2003; 130 (8): 1565-77.
Hedgehog signalling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. , Take-uchi M., Development. March 1, 2003; 130 (5): 955-68.
Molecular cloning and expression analysis of dystroglycan during Xenopus laevis embryogenesis. , Lunardi A ., Mech Dev. December 1, 2002; 119 Suppl 1 S49-54.
Axes establishment during eye morphogenesis in Xenopus by coordinate and antagonistic actions of BMP4, Shh, and RA. , Sasagawa S., Genesis. June 1, 2002; 33 (2): 86-96.
Dorsalization of the neural tube by Xenopus tiarin, a novel patterning factor secreted by the flanking nonneural head ectoderm. , Tsuda H., Neuron. February 14, 2002; 33 (4): 515-28.
Expression of the Xvax2 gene demarcates presumptive ventral telencephalon and specific visual structures in Xenopus laevis. , Liu Y ., Mech Dev. January 1, 2001; 100 (1): 115-8.
A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1. , Pera EM ., Mech Dev. September 1, 2000; 96 (2): 183-95.
Expanded retina territory by midbrain transformation upon overexpression of Six6 ( Optx2) in Xenopus embryos. , Bernier G., Mech Dev. May 1, 2000; 93 (1-2): 59-69.
Homeobox genes in the genetic control of eye development. , Lupo G., Int J Dev Biol. January 1, 2000; 44 (6): 627-36.
Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin-B ligands. , Helbling PM., Dev Dyn. December 1, 1999; 216 (4-5): 361-73.
Vax1, a novel homeobox-containing gene, directs development of the basal forebrain and visual system. , Hallonet M., Genes Dev. December 1, 1999; 13 (23): 3106-14.
A homeobox gene, vax2, controls the patterning of the eye dorsoventral axis. , Barbieri AM., Proc Natl Acad Sci U S A. September 14, 1999; 96 (19): 10729-34.
Giant eyes in Xenopus laevis by overexpression of XOptx2. , Zuber ME ., Cell. August 6, 1999; 98 (3): 341-52.
Expression of the Vax family homeobox genes suggests multiple roles in eye development. , Ohsaki K., Genes Cells. May 1, 1999; 4 (5): 267-76.
Programmed cell death during Xenopus development: a spatio-temporal analysis. , Hensey C., Dev Biol. November 1, 1998; 203 (1): 36-48.
Chondroitin sulfates modulate axon guidance in embryonic Xenopus brain. , Anderson RB ., Dev Biol. October 15, 1998; 202 (2): 235-43.
Vax1 is a novel homeobox-containing gene expressed in the developing anterior ventral forebrain. , Hallonet M., Development. July 1, 1998; 125 (14): 2599-610.
The Xenopus homologue of the Drosophila gene tailless has a function in early eye development. , Hollemann T ., Development. July 1, 1998; 125 (13): 2425-32.
Postgastrulation effects of fibroblast growth factor on Xenopus development. , Lombardo A., Dev Dyn. May 1, 1998; 212 (1): 75-85.
Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development. , Heller N., Mech Dev. December 1, 1997; 69 (1-2): 83-104.
Retinoic acid establishes ventral retinal characteristics. , Hyatt GA., Development. January 1, 1996; 122 (1): 195-204.
Fate of the anterior neural ridge and the morphogenesis of the Xenopus forebrain. , Eagleson G., J Neurobiol. October 1, 1995; 28 (2): 146-58.
Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals. , Papalopulu N ., Development. March 1, 1993; 117 (3): 961-75.
Relationship between local cell division and cell displacement during regeneration of embryonic Xenopus eye fragments. , Underwood LW., J Exp Zool. February 1, 1993; 265 (2): 165-77.
The early development of the frog retinotectal projection. , Taylor JS., Development. January 1, 1991; Suppl 2 95-104.
Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary. , Hayes WP., Development. November 1, 1990; 110 (3): 747-57.
The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract. , Easter SS., Development. November 1, 1989; 107 (3): 553-73.
Factors guiding optic fibers in developing Xenopus retina. , Bork T., J Comp Neurol. October 8, 1987; 264 (2): 147-58.