Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (14960) Expression Attributions Wiki
XB-ANAT-468

Papers associated with whole organism

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Development and ciliation of the palate in two frogs, Bombina and Xenopus; a comparative study., LeCluyse EL., Tissue Cell. January 1, 1985; 17 (6): 853-64.


The effect of calcitonin on the prechordal mesoderm, neural plate and neural crest of Xenopus embryos., Burgess AM., J Anat. January 1, 1985; 140 ( Pt 1) 49-55.


The development of the dendritic organization of primary and secondary motoneurons in the spinal cord of Xenopus laevis. An HRP study., van Mier P., Anat Embryol (Berl). January 1, 1985; 172 (3): 311-24.


Alteration of the anterior-posterior embryonic axis: the pattern of gastrulation in macrocephalic frog embryos., Kao KR., Dev Biol. January 1, 1985; 107 (1): 239-51.


Response of nerve growth cone to focal electric currents., Patel NB., J Neurosci Res. January 1, 1985; 13 (1-2): 245-56.


Membrane-related specializations associated with acetylcholine receptor aggregates induced by electric fields., Luther PW., J Cell Biol. January 1, 1985; 100 (1): 235-44.


Does the amphibian eye have an ocular oxygen-concentrating mechanism?, Toews DP., Exp Biol. January 1, 1985; 43 (3): 179-82.


Ionic control of locomotion and shape of epithelial cells: I. Role of calcium influx., Mittal AK., Cell Motil. January 1, 1985; 5 (2): 123-36.


Anti-immunoglobulin M induces both B-lymphocyte proliferation and differentiation in Xenopus laevis., Schwager J., Differentiation. January 1, 1985; 30 (1): 29-34.


Growth cones and the formation of central and peripheral neurites by sensory neurones in amphibian embryos., Roberts A., J Neurosci Res. January 1, 1985; 13 (1-2): 23-38.


Germ plasm and germ cell determination in Xenopus laevis as studied by cell transplantation analysis., Wylie CC., Cold Spring Harb Symp Quant Biol. January 1, 1985; 50 37-43.


Taxonomic and evolutionary significance of peptides in amphibian skin., Cei JM., Peptides. January 1, 1985; 6 Suppl 3 13-6.


Suppression in Xenopus laevis: thymus inducer, spleen effector cells., Ruben LN., Immunology. January 1, 1985; 54 (1): 65-70.


Three types of transmitter release from embryonic neurons., Poo MM., J Physiol (Paris). January 1, 1985; 80 (4): 283-9.


Fibrillarin: a new protein of the nucleolus identified by autoimmune sera., Ochs RL., Biol Cell. January 1, 1985; 54 (2): 123-33.


Biochemical specificity of Xenopus notochord., Smith JC., Differentiation. January 1, 1985; 29 (2): 109-15.          


T-lymphocyte regulation of humoral immunity in Xenopus laevis, the South African clawed toad., Ruben LN., Dev Comp Immunol. January 1, 1985; 9 (4): 811-8.


Specific changes in axonally transported proteins during regeneration of the frog (Xenopus laevis) optic nerve., Szaro BG., J Neurosci. January 1, 1985; 5 (1): 192-208.


Genes for hair and avian keratins., Rogers GE., Ann N Y Acad Sci. January 1, 1985; 455 403-25.


Translation and functional expression of cell-cell channel mRNA in Xenopus oocytes., Werner R., J Membr Biol. January 1, 1985; 87 (3): 253-68.


Afrikander cattle congenital goiter: size heterogeneity in thyroglobulin mRNA., Ricketts MH., Biochem Biophys Res Commun. January 16, 1985; 126 (1): 240-6.


Tadpole Xenopus laevis hemoglobin. Correlation between structure and functional properties., Brunori M., J Mol Biol. January 20, 1985; 181 (2): 327-9.


Development of early brainstem projections to the tail spinal cord of Xenopus., Nordlander RH., J Comp Neurol. January 22, 1985; 231 (4): 519-29.


Regulation of the production of granulocyte-macrophage colony-stimulating factor by macrophage-like tumour cell lines., Hume DA., FEBS Lett. January 28, 1985; 180 (2): 271-4.


Localization of the factors producing the periodic activities responsible for synchronous cleavage in Xenopus embryos., Shinagawa A., J Embryol Exp Morphol. February 1, 1985; 85 33-46.


The expression of creatine kinase isozymes in Xenopus tropicalis, Xenopus laevis laevis, and their viable hybrid., Bürki E., Biochem Genet. February 1, 1985; 23 (1-2): 73-88.


The distribution of fibres in the optic tract after contralateral translocation of an eye in Xenopus., Taylor JS., J Embryol Exp Morphol. February 1, 1985; 85 225-38.


Nuclear-cytoplasmic interactions affecting DNA synthesis during induced cardiac muscle growth in the rat., Bugaisky LB., Cardiovasc Res. February 1, 1985; 19 (2): 89-94.


The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum., Udin SB., J Comp Neurol. February 1, 1985; 232 (1): 25-35.


[Use of colloidal gold in ultrastructural cytochemistry]., Raska I., Cesk Patol. February 1, 1985; 21 (1): 28-37.


The tissue-specific chicken histone H5 gene is transcribed with fidelity in Xenopus laevis oocytes., Wigley PL., J Mol Biol. February 5, 1985; 181 (3): 449-52.


Regulation of neuron numbers in Xenopus laevis: effects of hormonal manipulation altering size at metamorphosis., Sperry DG., J Comp Neurol. February 15, 1985; 232 (3): 287-98.


Pharmacological modification of the light-induced responses of Müller (glial) cells in the amphibian retina., Witkovsky P., Dev Biol. February 25, 1985; 328 (1): 111-20.


Non-quantal release of acetylcholine at a developing neuromuscular synapse in culture., Sun YA., J Neurosci. March 1, 1985; 5 (3): 634-42.


Occurrence of a species-specific nuclear antigen in the germ line of Xenopus and its expression from paternal genes in hybrid frogs., Wedlich D., Dev Biol. March 1, 1985; 108 (1): 220-34.                


Intertectal neuronal plasticity in Xenopus laevis: persistence despite catecholamine depletion., Udin SB., Dev Biol. March 1, 1985; 351 (1): 81-8.


Transformed Xenopus embryos as a transient expression system to analyze gene expression at the midblastula transition., Etkin LD., Dev Biol. March 1, 1985; 108 (1): 173-8.


Intensifier for Bodian staining of tissue sections and cell cultures., Katz MJ., Stain Technol. March 1, 1985; 60 (2): 81-7.


Growth and death of cells of the mesencephalic fifth nucleus in Xenopus laevis larvae., Kollros JJ., J Comp Neurol. March 22, 1985; 233 (4): 481-9.


Specificity of innervation among Xenopus twitch muscle fibers., Nudell B., Dev Biol. March 25, 1985; 330 (2): 353-7.


Developmentally controlled expression of immunoglobulin VH genes., Perlmutter RM., Science. March 29, 1985; 227 (4694): 1597-601.


Retrograde degeneration of myelinated axons and re-organization in the optic nerves of adult frogs (Xenopus laevis) following nerve injury or tectal ablation., Bohn RC., J Neurocytol. April 1, 1985; 14 (2): 221-44.


Effect of concanavalin A and vegetalizing factor on the outer and inner ectoderm layers of early gastrulae of Xenopus laevis after treatment with cytochalasin B., Grunz H., Cell Differ. April 1, 1985; 16 (2): 83-92.


Regulation in the neural plate of Xenopus laevis demonstrated by genetic markers., Szaro B., J Exp Zool. April 1, 1985; 234 (1): 117-29.


An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis., Busa WB., J Cell Biol. April 1, 1985; 100 (4): 1325-9.


Translation of human macrophage activating factor (for glucose consumption) mRNA in Xenopus laevis oocytes., Ishii Y., Immunol Invest. April 1, 1985; 14 (2): 95-103.


Release of acetylcholine from embryonic neurons upon contact with muscle cell., Chow I., J Neurosci. April 1, 1985; 5 (4): 1076-82.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. III. The role of thyroxine., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 930-40.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. II. Ingrowth of optic nerve fibers and production of ipsilaterally projecting retinal ganglion cells., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 920-9.


Development of the ipsilateral retinothalamic projection in the frog Xenopus laevis. I. Retinal distribution of ipsilaterally projecting cells in normal and experimentally manipulated frogs., Hoskins SG., J Neurosci. April 1, 1985; 5 (4): 911-9.

???pagination.result.page??? ???pagination.result.prev??? 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ???pagination.result.next???