Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1563) Expression Attributions Wiki
XB-ANAT-55

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 21 22 23 24 25 26 27 28 29 30 31 32 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Xenopus endo B is a keratin preferentially expressed in the embryonic notochord., LaFlamme SE., Genes Dev. July 1, 1988; 2 (7): 853-62.            


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR., Dev Biol. May 1, 1988; 127 (1): 64-77.                      


Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers., Krotoski DM., Dev Biol. May 1, 1988; 127 (1): 119-32.


Dorsal and ventral cells of cleavage-stage Xenopus embryos show the same ability to induce notochord and somite formation., Pierce KE., Dev Biol. April 1, 1988; 126 (2): 228-32.


Lack of keratan sulphate in the human notochord., Salisbury JR., J Anat. April 1, 1988; 157 175-9.


Mesoderm-inducing factors: a small class of molecules., Godsave SF., Development. March 1, 1988; 102 (3): 555-66.


Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis., Baldwin TJ., J Cell Biol. February 1, 1988; 106 (2): 469-78.              


The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence., Cooke J., Development. January 1, 1988; 102 (1): 85-99.          


Expression and segregation of nucleoplasmin during development in Xenopus., Litvin J., Development. January 1, 1988; 102 (1): 9-21.                    


The distribution of tenascin coincides with pathways of neural crest cell migration., Mackie EJ., Development. January 1, 1988; 102 (1): 237-50.              


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J., Development. December 1, 1987; 101 (4): 893-908.            


Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis., Levi G., J Cell Biol. November 1, 1987; 105 (5): 2359-72.                  


An amphibian cytoskeletal-type actin gene is expressed exclusively in muscle tissue., Mohun TJ., Development. October 1, 1987; 101 (2): 393-402.              


Fates of the blastomeres of the 32-cell-stage Xenopus embryo., Moody SA., Dev Biol. August 1, 1987; 122 (2): 300-19.      


Regional specification within the mesoderm of early embryos of Xenopus laevis., Dale L., Development. June 1, 1987; 100 (2): 279-95.


Localization of Xenopus homoeo-box gene transcripts during embryogenesis and in the adult nervous system., Carrasco AE., Dev Biol. May 1, 1987; 121 (1): 69-81.              


Fate map for the 32-cell stage of Xenopus laevis., Dale L., Development. April 1, 1987; 99 (4): 527-51.                


Expression of the Ca2+-binding protein, parvalbumin, during embryonic development of the frog, Xenopus laevis., Kay BK., J Cell Biol. April 1, 1987; 104 (4): 841-7.              


Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction., Kintner CR., Development. March 1, 1987; 99 (3): 311-25.                  


Fates of the blastomeres of the 16-cell stage Xenopus embryo., Moody SA., Dev Biol. February 1, 1987; 119 (2): 560-78.        


Neural cell adhesion molecule expression in Xenopus embryos., Balak K., Dev Biol. February 1, 1987; 119 (2): 540-50.              


The midblastula cell cycle transition and the character of mesoderm in u.v.-induced nonaxial Xenopus development., Cooke J., Development. February 1, 1987; 99 (2): 197-210.              


A mesoderm-inducing factor is produced by Xenopus cell line., Smith JC., Development. January 1, 1987; 99 (1): 3-14.              


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              


Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo., Gimlich RL., Dev Biol. June 1, 1986; 115 (2): 340-52.


Myoblasts and notochord influence the orientation of somitic myoblasts from Xenopus laevis., McCaig CD., J Embryol Exp Morphol. April 1, 1986; 93 121-31.


Developmental Fates of Blastomeres of Eight-Cell-Stage Xenopus laevis Embryos: (intracellular injection/horseradish peroxidase/developmental fate/Xenopus embryo)., Masho R., Dev Growth Differ. April 1, 1986; 28 (2): 113-123.


Localization of specific mRNA sequences in Xenopus laevis embryos by in situ hybridization., Dworkin-Rastl E., J Embryol Exp Morphol. February 1, 1986; 91 153-68.            


Development of the ectoderm in Xenopus: tissue specification and the role of cell association and division., Jones EA., Cell. January 31, 1986; 44 (2): 345-55.                


Effects of minute doses of ethylenebisdithiocarbamate disodium salt (nabam) and its degradative products on connective tissue envelopes of the notochord in Xenopus: an ultrastructural study., Birch WX., Cytobios. January 1, 1986; 48 (194-195): 175-84.


Explanted and implanted notochord of amphibian anuran embryos. Histofluorescence study on the ability to synthesize catecholamines., Godin I., Anat Embryol (Berl). January 1, 1986; 173 (3): 393-9.


Tissue interactions during axial structure pattern formation in amphibia., Malacinski GM., Scan Electron Microsc. January 1, 1986; (Pt 2): 307-18.


Regional specificity of glycoconjugates in Xenopus and axolotl embryos., Slack JM., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 137-53.      


Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies., Dale L., J Embryol Exp Morphol. October 1, 1985; 89 289-312.      


Dynamics of the control of body pattern in the development of Xenopus laevis. II. Timing and pattern in the development of single blastomeres (presumptive lateral halves) isolated at the 2-cell stage., Cooke J., J Embryol Exp Morphol. August 1, 1985; 88 113-33.


The embryotoxic and osteolathyrogenic effects of semicarbazide., Schultz TW., Toxicology. August 1, 1985; 36 (2-3): 183-98.


Biochemical specificity of Xenopus notochord., Smith JC., Differentiation. January 1, 1985; 29 (2): 109-15.          


CNS effects of mechanically produced spina bifida., Katz MJ., Dev Med Child Neurol. October 1, 1984; 26 (5): 617-31.


Cell lineage analysis of neural induction: origins of cells forming the induced nervous system., Jacobson M., Dev Biol. March 1, 1984; 102 (1): 122-9.


Neural tube (canal) morphogenesis in notochordless amphibian (Xenopus laevis) embryos., Malacinski GM., Proc Soc Exp Biol Med. December 1, 1983; 174 (3): 316-21.


Dorsalization and neural induction: properties of the organizer in Xenopus laevis., Smith JC., J Embryol Exp Morphol. December 1, 1983; 78 299-317.


Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers., Anderson MJ., J Cell Biol. November 1, 1983; 97 (5 Pt 1): 1396-411.


On the role of the notochord in somite formation and the possible evolutionary significance of the concomitant cell re-orientation., Burgess AM., J Anat. June 1, 1983; 136 (Pt 4): 829-35.


Changes in the ultrastructure of neural tube cells and the notochordal sheath of ultraviolet irradiated Xenopus laevis embryos., Jurand A., Acta Embryol Morphol Exp. May 1, 1983; 4 (1): 3-16.


Change in the differentiation pattern ofXenopus laevis ectoderm by variation of the incubation time and concentration of vegetalizing factor., Grunz H., Wilehm Roux Arch Dev Biol. May 1, 1983; 192 (3-4): 130-137.


Effects of inducers on inner and outer gastrula ectoderm layers of Xenopus laevis., Asashima M., Differentiation. January 1, 1983; 23 (3): 206-12.


The structure of the anuran amphibian Notochord and a re-evaluation of its presumed role in early embryogenesis., Malacinski GM., Differentiation. January 1, 1982; 21 (1): 13-21.


[Detection of collagen by immunofluorescence during development of Xenopus (Xenopus laevis Daud.)]., Bride M., C R Seances Soc Biol Fil. January 1, 1982; 176 (4): 494-502.


Somitogenesis in the amphibian Xenopus laevis: scanning electron microscopic analysis of intrasomitic cellular arrangements during somite rotation., Youn BW., J Embryol Exp Morphol. August 1, 1981; 64 23-43.

???pagination.result.page??? ???pagination.result.prev??? 21 22 23 24 25 26 27 28 29 30 31 32 ???pagination.result.next???