Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (339) Expression Attributions Wiki
XB-ANAT-295

Papers associated with animal

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Electrical currents through full-grown and maturing Xenopus oocytes., Robinson KR., Proc Natl Acad Sci U S A. February 1, 1979; 76 (2): 837-41.


Insensitivity to cytochalasin B of surface contractions keyed to cleavage in the Xenopus egg., Christensen K., J Embryol Exp Morphol. December 1, 1982; 72 143-51.


A subcortical, pigment-containing structure in Xenopus eggs with contractile properties., Merriam RW., Dev Biol. February 1, 1983; 95 (2): 439-46.


Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation., Gardiner DM., J Cell Biol. April 1, 1983; 96 (4): 1159-63.


Localization of a pigment-containing structure near the surface of Xenopus eggs which contracts in response to calcium., Merriam RW., J Embryol Exp Morphol. August 1, 1983; 76 51-65.


Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs., Ubbels GA., J Embryol Exp Morphol. October 1, 1983; 77 15-37.


The modifications of cortical endoplasmic reticulum during in vitro maturation of Xenopus laevis oocytes and its involvement in cortical granule exocytosis., Campanella C., J Exp Zool. February 1, 1984; 229 (2): 283-93.


Localization of the factors producing the periodic activities responsible for synchronous cleavage in Xenopus embryos., Shinagawa A., J Embryol Exp Morphol. February 1, 1985; 85 33-46.


An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis., Busa WB., J Cell Biol. April 1, 1985; 100 (4): 1325-9.


The wave of activation current in the Xenopus egg., Kline D., Dev Biol. October 1, 1985; 111 (2): 471-87.


Identification and cloning of localized maternal RNAs from Xenopus eggs., Rebagliati MR., Cell. October 1, 1985; 42 (3): 769-77.


Cell lineage labels and region-specific markers in the analysis of inductive interactions., Smith JC., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 317-31.


Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface., Vincent JP., Dev Biol. February 1, 1986; 113 (2): 484-500.


Expression of an epidermal antigen used to study tissue induction in the early Xenopus laevis embryo., Akers RM., Science. February 7, 1986; 231 (4738): 613-6.


Protein synthesis and messenger RNA levels along the animal-vegetal axis during early Xenopus development., Smith RC., J Embryol Exp Morphol. June 1, 1986; 95 15-35.


A mesoderm-inducing factor is produced by Xenopus cell line., Smith JC., Development. January 1, 1987; 99 (1): 3-14.              


Cortical activity in vertebrate eggs. I: The activation waves., Cheer A., J Theor Biol. February 21, 1987; 124 (4): 377-404.


The first cleavage furrow demarcates the dorsal-ventral axis in Xenopus embryos., Klein SL., Dev Biol. March 1, 1987; 120 (1): 299-304.


Loss of functional sperm entry into Xenopus eggs after activation correlates with a reduction in surface adhesivity., Stewart-Savage J., Dev Biol. April 1, 1987; 120 (2): 434-46.


Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient., Danilchik MV., Dev Biol. July 1, 1987; 122 (1): 101-12.


Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos., Klymkowsky MW., Development. July 1, 1987; 100 (3): 543-57.              


Fertilization induces endocytosis in Xenopus eggs., Bernardini G., Cell Differ. September 1, 1987; 21 (4): 255-60.


Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification., Vincent JP., Dev Biol. October 1, 1987; 123 (2): 526-39.


The involvement of inositol 1,4,5-trisphosphate and calcium in the two-component response to acetylcholine in Xenopus oocytes., Gillo B., J Physiol. November 1, 1987; 392 349-61.


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J., Development. December 1, 1987; 101 (4): 893-908.            


Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo., Kimelman D., Cell. December 4, 1987; 51 (5): 869-77.


Analysis of proteins in the peripheral and central regions of amphibian oocytes and eggs., Capco DG., Cell Differ. April 1, 1988; 23 (3): 155-64.


Vimentin expression in oocytes, eggs and early embryos of Xenopus laevis., Tang P., Development. June 1, 1988; 103 (2): 279-87.              


Differences in receptor-evoked membrane electrical responses in native and mRNA-injected Xenopus oocytes., Oron Y., Proc Natl Acad Sci U S A. June 1, 1988; 85 (11): 3820-4.


Maitotoxin triggers the cortical reaction and phosphatidylinositol-4,5-bisphosphate breakdown in amphibian oocytes., Bernard V., Eur J Biochem. July 1, 1988; 174 (4): 655-62.


Expression of Epi 1, an epidermis-specific marker in Xenopus laevis embryos, is specified prior to gastrulation., London C., Dev Biol. October 1, 1988; 129 (2): 380-9.              


Expression of a histone H1-like protein is restricted to early Xenopus development., Smith RC., Genes Dev. October 1, 1988; 2 (10): 1284-95.              


Nuclear protein synthesis in animal and vegetal hemispheres of Xenopus oocytes., Feldherr CM., Exp Cell Res. December 1, 1988; 179 (2): 527-34.


Localization of c-myc expression during oogenesis and embryonic development in Xenopus laevis., Hourdry J., Development. December 1, 1988; 104 (4): 631-41.          


Inducing factors and the control of mesodermal pattern in Xenopus laevis., Smith JC., Development. January 1, 1989; 107 Suppl 149-59.


Developmental expression of the protein product of Vg1, a localized maternal mRNA in the frog Xenopus laevis., Dale L., EMBO J. April 1, 1989; 8 (4): 1057-65.


Induction of mesoderm by a viral oncogene in early Xenopus embryos., Whitman M., Science. May 19, 1989; 244 (4906): 803-6.


Latencies of membrane currents evoked in Xenopus oocytes by receptor activation, inositol trisphosphate and calcium., Miledi R., J Physiol. August 1, 1989; 415 189-210.


MPF-induced breakdown of cytokeratin filament organization in the maturing Xenopus oocyte depends upon the translation of maternal mRNAs., Klymkowsky MW., Dev Biol. August 1, 1989; 134 (2): 479-85.      


The biological effects of XTC-MIF: quantitative comparison with Xenopus bFGF., Green JB., Development. January 1, 1990; 108 (1): 173-83.


Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres., Moody SA., Anat Embryol (Berl). January 1, 1990; 182 (4): 347-62.


A two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA., Yisraeli JK., Development. February 1, 1990; 108 (2): 289-98.              


Effect of microinjection of a low-Mr human placenta protein tyrosine phosphatase on induction of meiotic cell division in Xenopus oocytes., Tonks NK., Mol Cell Biol. February 1, 1990; 10 (2): 458-63.


Two types of intrinsic muscarinic responses in Xenopus oocytes. II. Hemispheric asymmetry of responses and receptor distribution., Matus-Leibovitch N., Pflugers Arch. October 1, 1990; 417 (2): 194-9.


Autoradiography of progesterone and model compound entry and distribution in Xenopus laevis oocytes., Bronson DD., Prog Histochem Cytochem. January 1, 1991; 22 (4): 1-59.


Gene activation in the amphibian mesoderm., Hopwood ND., Dev Suppl. January 1, 1991; 1 95-104.


Cortical membrane-trafficking during the meiotic resumption of Xenopus laevis oocytes., Dersch MA., Cell Tissue Res. February 1, 1991; 263 (2): 375-83.


Organization, nucleation, and acetylation of microtubules in Xenopus laevis oocytes: a study by confocal immunofluorescence microscopy., Gard DL., Dev Biol. February 1, 1991; 143 (2): 346-62.                


Single cell analysis of mesoderm formation in the Xenopus embryo., Godsave SF., Development. February 1, 1991; 111 (2): 523-30.


Expression of a novel cadherin (EP-cadherin) in unfertilized eggs and early Xenopus embryos., Ginsberg D., Development. February 1, 1991; 111 (2): 315-25.                

???pagination.result.page??? 1 2 3 4 5 6 7 ???pagination.result.next???