Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (2200) Attributions Wiki
XB-STAGE-7

Papers associated with gastrula stage

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The role of the Spemann organizer in anterior-posterior patterning of the trunk., Jansen HJ, Wacker SA, Bardine N, Durston AJ., Mech Dev. January 1, 2007; 124 (9-10): 668-81.                


RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes., Tanaka KJ, Ogawa K, Takagi M, Imamoto N, Matsumoto K, Tsujimoto M., J Biol Chem. December 29, 2006; 281 (52): 40096-106.                


Xenopus Dab2 is required for embryonic angiogenesis., Cheong SM, Choi SC, Han JK., BMC Dev Biol. December 19, 2006; 6 63.                  


Neurotrophin receptor homolog (NRH1) proteins regulate mesoderm formation and apoptosis during early Xenopus development., Knapp D, Messenger N, Ahmed Rana A, Smith JC., Dev Biol. December 15, 2006; 300 (2): 554-69.                  


pEg6, a spire family member, is a maternal gene encoding a vegetally localized mRNA in Xenopus embryos., Le Goff C, Laurent V, Le Bon K, Tanguy G, Couturier A, Le Goff X, Le Guellec R., Biol Cell. December 1, 2006; 98 (12): 697-708.


Xenopus Zic4: Conservation and diversification of expression profiles and protein function among the Xenopus Zic family., Fujimi TJ, Mikoshiba K, Aruga J., Dev Dyn. December 1, 2006; 235 (12): spc1.


FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development., Steiner AB, Engleka MJ, Lu Q, Piwarzyk EC, Yaklichkin S, Lefebvre JL, Walters JW, Pineda-Salgado L, Labosky PA, Kessler DS., Development. December 1, 2006; 133 (24): 4827-38.                    


Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides., Rana AA, Collart C, Gilchrist MJ, Smith JC., PLoS Genet. November 17, 2006; 2 (11): e193.                                    


Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/Smad1 pathway., Alexandrova EM, Thomsen GH., Dev Biol. November 15, 2006; 299 (2): 398-410.                      


FGF signal transduction and the regulation of Cdx gene expression., Keenan ID, Sharrard RM, Isaacs HV., Dev Biol. November 15, 2006; 299 (2): 478-88.    


Retinoic acid signalling is required for specification of pronephric cell fate., Cartry J, Nichane M, Ribes V, Colas A, Riou JF, Pieler T, Dollé P, Bellefroid EJ, Umbhauer M., Dev Biol. November 1, 2006; 299 (1): 35-51.                  


Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development., Webb SE, Miller AL., Biochim Biophys Acta. November 1, 2006; 1763 (11): 1192-208.


Cloning and analyzing of Xenopus Mespo promoter in retinoic acid regulated Mespo expression., Wang JH, Ding XY., Acta Biochim Biophys Sin (Shanghai). November 1, 2006; 38 (11): 759-64.


Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity., Dal-Pra S, Fürthauer M, Van-Celst J, Thisse B, Thisse C., Dev Biol. October 15, 2006; 298 (2): 514-26.


Function of the two Xenopus smad4s in early frog development., Chang C, Brivanlou AH, Harland RM., J Biol Chem. October 13, 2006; 281 (41): 30794-803.                


The FoxP subclass in Xenopus laevis development., Schön C, Wochnik A, Rössner A, Donow C, Knöchel W., Dev Genes Evol. October 1, 2006; 216 (10): 641-6.


Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo., Tashiro S, Sedohara A, Asashima M, Izutsu Y, Maéno M., Dev Growth Differ. October 1, 2006; 48 (8): 499-512.                    


Visualization of the Xenopus primordial germ cells using a green fluorescent protein controlled by cis elements of the 3' untranslated region of the DEADSouth gene., Kataoka K, Yamaguchi T, Orii H, Tazaki A, Watanabe K, Mochii M., Mech Dev. October 1, 2006; 123 (10): 746-60.              


Functional analysis of Sox8 during neural crest development in Xenopus., O'Donnell M, Hong CS, Huang X, Delnicki RJ, Saint-Jeannet JP., Development. October 1, 2006; 133 (19): 3817-26.              


The Xfeb gene is directly upregulated by Zic1 during early neural development., Li S, Shin Y, Cho KW, Merzdorf CS., Dev Dyn. October 1, 2006; 235 (10): 2817-27.      


PTEN is required for the normal progression of gastrulation by repressing cell proliferation after MBT in Xenopus embryos., Ueno S, Kono R, Iwao Y., Dev Biol. September 1, 2006; 297 (1): 274-83.            


Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis., Chalmers AD, Lachani K, Shin Y, Sherwood V, Cho KW, Papalopulu N., Mech Dev. September 1, 2006; 123 (9): 702-18.                                                  


Kermit 2/XGIPC, an IGF1 receptor interacting protein, is required for IGF signaling in Xenopus eye development., Wu J, O'Donnell M, Gitler AD, Klein PS., Development. September 1, 2006; 133 (18): 3651-60.          


Effects of hypergravity environments on amphibian development, gene expression and apoptosis., Kawakami S, Kashiwagi K, Furuno N, Yamashita M, Kashiwagi A., Comp Biochem Physiol A Mol Integr Physiol. September 1, 2006; 145 (1): 65-72.


Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates., Snir M, Ofir R, Elias S, Frank D., EMBO J. August 9, 2006; 25 (15): 3664-74.


Xenopus POU factors of subclass V inhibit activin/nodal signaling during gastrulation., Cao Y, Siegel D, Knöchel W., Mech Dev. August 1, 2006; 123 (8): 614-25.            


Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development., Tadjuidje E, Hollemann T., Dev Dyn. August 1, 2006; 235 (8): 2095-110.                          


Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development., Lane MC, Sheets MD., Dev Biol. August 1, 2006; 296 (1): 12-28.                


Expression of TFAP2beta and TFAP2gamma genes in Xenopus laevis., Zhang Y, Luo T, Sargent TD., Gene Expr Patterns. August 1, 2006; 6 (6): 589-95.      


Triadimefon causes branchial arch malformations in Xenopus laevis embryos., Papis E, Bernardini G, Gornati R, Prati M., Environ Sci Pollut Res Int. July 1, 2006; 13 (4): 251-5.


Neofunctionalization in vertebrates: the example of retinoic acid receptors., Escriva H, Bertrand S, Germain P, Robinson-Rechavi M, Umbhauer M, Cartry J, Duffraisse M, Holland L, Gronemeyer H, Laudet V., PLoS Genet. July 1, 2006; 2 (7): e102.                  


Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance., Seitan VC, Banks P, Laval S, Majid NA, Dorsett D, Rana A, Smith J, Bateman A, Krpic S, Hostert A, Rollins RA, Erdjument-Bromage H, Tempst P, Benard CY, Hekimi S, Newbury SF, Strachan T., PLoS Biol. July 1, 2006; 4 (8): e242.                


Novel gene ashwin functions in Xenopus cell survival and anteroposterior patterning., Patil SS, Alexander TB, Uzman JA, Lou CH, Gohil H, Sater AK., Dev Dyn. July 1, 2006; 235 (7): 1895-907.                            


PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus., Rangarajan J, Luo T, Sargent TD., Dev Biol. July 1, 2006; 295 (1): 206-18.              


Differential role of 14-3-3 family members in Xenopus development., Lau JM, Wu C, Muslin AJ., Dev Dyn. July 1, 2006; 235 (7): 1761-76.                                                    


Xenopus ADAMTS1 negatively modulates FGF signaling independent of its metalloprotease activity., Suga A, Hikasa H, Taira M., Dev Biol. July 1, 2006; 295 (1): 26-39.    


Formation of the ascidian epidermal sensory neurons: insights into the origin of the chordate peripheral nervous system., Pasini A, Amiel A, Rothbächer U, Roure A, Lemaire P, Darras S., PLoS Biol. July 1, 2006; 4 (7): e225.              


Induction and specification of cranial placodes., Schlosser G., Dev Biol. June 15, 2006; 294 (2): 303-51.                


Purification of NADPH-P450 reductase (NPR) from Xenopus laevis and the developmental change in NPR expression., Mori T, Yamazaki A, Kinoshita T, Imaoka S., Life Sci. June 13, 2006; 79 (3): 247-51.


Pbx1 and Meis1 regulate activity of the Xenopus laevis Zic3 promoter through a highly conserved region., Kelly LE, Carrel TL, Herman GE, El-Hodiri HM., Biochem Biophys Res Commun. June 9, 2006; 344 (3): 1031-7.        


Genomic analysis of Xenopus organizer function., Hufton AL, Vinayagam A, Suhai S, Baker JC., BMC Dev Biol. June 6, 2006; 6 27.                  


Negative regulation of Hedgehog signaling by the cholesterogenic enzyme 7-dehydrocholesterol reductase., Koide T, Hayata T, Cho KW., Development. June 1, 2006; 133 (12): 2395-405.                


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C, Nichane M, Antoniou A, Pendeville H, Bronchain OJ, Marine JC, Mazabraud A, Voz ML, Bellefroid EJ., Dev Biol. June 1, 2006; 294 (1): 203-19.                


Developmental expression patterns of Tbx1, Tbx2, Tbx5, and Tbx20 in Xenopus tropicalis., Showell C, Christine KS, Mandel EM, Conlon FL., Dev Dyn. June 1, 2006; 235 (6): 1623-30.                      


Global analysis of the transcriptional network controlling Xenopus endoderm formation., Sinner D, Kirilenko P, Rankin S, Rankin S, Wei E, Howard L, Kofron M, Heasman J, Woodland HR, Zorn AM., Development. May 1, 2006; 133 (10): 1955-66.              


Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergent and extension movements in Xenopus embryos., Muñoz R, Moreno M, Oliva C, Orbenes C, Larraín J., Nat Cell Biol. May 1, 2006; 8 (5): 492-500.


XNF-ATc3 affects neural convergent extension., Borchers A, Fonar Y, Frank D, Baker JC., Development. May 1, 2006; 133 (9): 1745-55.          


Cleavage and survival of Xenopus embryos exposed to 8 T static magnetic fields in a rotating clinostat., Eguchi Y, Ueno S, Kaito C, Sekimizu K, Shiokawa K., Bioelectromagnetics. May 1, 2006; 27 (4): 307-13.


Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates., Adams DS, Robinson KR, Fukumoto T, Yuan S, Albertson RC, Yelick P, Kuo L, McSweeney M, Levin M., Development. May 1, 2006; 133 (9): 1657-71.              


Tes regulates neural crest migration and axial elongation in Xenopus., Dingwell KS, Smith JC., Dev Biol. May 1, 2006; 293 (1): 252-67.                          

???pagination.result.page??? ???pagination.result.prev??? 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 ???pagination.result.next???