Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (147) Attributions Wiki
XB-STAGE-60

Papers associated with NF stage 46

Limit to papers also referencing gene:
Results 1 - 50 of 147 results

Page(s): 1 2 3 Next

Sort Newest To Oldest Sort Oldest To Newest

Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles., Hänzi S, Straka H., J Exp Biol. January 15, 2017; 220 (Pt 2): 227-236.


Continued Studies on the Effects of Simazine on the Liver Histological Structure and Metamorphosis in the Developing Xenopus laevis., Sai L, Qu B, Li Y, Jia Q, Bo C, Liu Y, Yu G, Xie L, Li L, Ng JC, Peng C., Bull Environ Contam Toxicol. October 1, 2016; 97 (4): 517-20.


Regulation of growth rate and developmental timing by Xenopus thyroid hormone receptor α., Wen L, Shi YB., Dev Growth Differ. January 1, 2016; 58 (1): 106-15.          


An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system., Bestman JE, Huang LC, Lee-Osbourne J, Cheung P, Cline HT., Dev Biol. December 15, 2015; 408 (2): 269-91.                    


Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons., Elliott KL, Houston DW, DeCook R, Fritzsch B., Dev Neurobiol. December 1, 2015; 75 (12): 1339-51.        


Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis., Branoner F, Straka H., Dev Neurobiol. October 1, 2015; 75 (10): 1051-67.            


The Effects of Simazine, a Chlorotriazine Herbicide, on the Expression of Genes in Developing Male Xenopus laevis., Sai L, Liu Y, Qu B, Yu G, Guo Q, Bo C, Xie L, Jia Q, Li Y, Li X, Ng JC, Peng C., Bull Environ Contam Toxicol. August 1, 2015; 95 (2): 157-63.


Involvement of Slit-Robo signaling in the development of the posterior commissure and concomitant swimming behavior in Xenopus laevis., Tosa Y, Tsukano K, Itoyama T, Fukagawa M, Nii Y, Ishikawa R, Suzuki KT, Fukui M, Kawaguchi M, Murakami Y., Zoological Lett. June 15, 2015; 1 28.                      


HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum., Tao Y, Ruan H, Guo X, Li L, Shen W., PLoS One. March 16, 2015; 10 (3): e0120118.                


Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs., Elliott KL, Houston DW, Fritzsch B., Sci Rep. February 9, 2015; 5 8338.                


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T, Jandzik D, Cattell M, Coe A, Doherty J, Medeiros DM., Dev Biol. January 15, 2015; 397 (2): 293-304.                                            


Diverse functions of kindlin/fermitin proteins during embryonic development in Xenopus laevis., Rozario T, Mead PE, DeSimone DW., Mech Dev. August 1, 2014; 133 203-17.                


Sp8 regulates inner ear development., Chung HA, Medina-Ruiz S, Harland RM., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


Expression profile of the aromatase enzyme in the Xenopus brain and localization of estradiol and estrogen receptors in each tissue., Iwabuchi J, Koshimizu K, Nakagawa T., Gen Comp Endocrinol. December 1, 2013; 194 286-94.            


Effects of perfluorooctanesulfonate and perfluorobutanesulfonate on the growth and sexual development of Xenopus laevis., Lou QQ, Zhang YF, Zhang YF, Zhou Z, Shi YL, Ge YN, Ren DK, Xu HM, Zhao YX, Wei WJ, Qin ZF., Ecotoxicology. September 1, 2013; 22 (7): 1133-44.


A transgenic Xenopus laevis reporter model to study lymphangiogenesis., Ny A, Vandevelde W, Hohensinner P, Beerens M, Geudens I, Diez-Juan A, Brepoels K, Plaisance S, Krieg PA, Langenberg T, Vinckier S, Luttun A, Carmeliet P, Dewerchin M., Biol Open. July 11, 2013; 2 (9): 882-90.            


Tcf21 regulates the specification and maturation of proepicardial cells., Tandon P, Miteva YV, Kuchenbrod LM, Cristea IM, Conlon FL., Development. June 1, 2013; 140 (11): 2409-21.                                


Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1., Hagenlocher C, Walentek P, M Ller C, Thumberger T, Feistel K., Cilia. April 29, 2013; 2 (1): 12.                  


Jun N-terminal kinase maintains tissue integrity during cell rearrangement in the gut., Dush MK, Nascone-Yoder NM., Development. April 1, 2013; 140 (7): 1457-66.                      


Transplantation of Xenopus laevis tissues to determine the ability of motor neurons to acquire a novel target., Elliott KL, Houston DW, Fritzsch B., PLoS One. January 1, 2013; 8 (2): e55541.          


Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo., Mogi K, Adachi T, Izumi S, Toyoizumi R., Fluids Barriers CNS. April 25, 2012; 9 9.          


Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest., Agüero TH, Fernández JP, López GA, Tríbulo C, Aybar MJ., Dev Biol. April 15, 2012; 364 (2): 99-113.                    


An essential and highly conserved role for Zic3 in left-right patterning, gastrulation and convergent extension morphogenesis., Cast AE, Gao C, Amack JD, Ware SM., Dev Biol. April 1, 2012; 364 (1): 22-31.            


Simple, fast, tissue-specific bacterial artificial chromosome transgenesis in Xenopus., Fish MB, Nakayama T, Grainger RM., Genesis. March 1, 2012; 50 (3): 307-15.        


A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos., Morckel AR, Lusic H, Farzana L, Yoder JA, Deiters A, Nascone-Yoder NM., Development. January 1, 2012; 139 (2): 437-42.        


Histone deacetylases are required for amphibian tail and limb regeneration but not development., Taylor AJ, Beck CW., Mech Dev. January 1, 2012; 129 (9-12): 208-18.            


Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent., Cha HJ, Byrom M, Mead PE, Ellington AD, Wallingford JB, Marcotte EM., PLoS Biol. January 1, 2012; 10 (8): e1001379.                  


Thyroid disruption effects of environmental level perfluorooctane sulfonates (PFOS) in Xenopus laevis., Cheng Y, Cui Y, Chen HM, Xie WP., Ecotoxicology. November 1, 2011; 20 (8): 2069-78.


Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes., Mondia JP, Adams DS, Orendorff RD, Levin M, Omenetto FG., Biomed Opt Express. August 1, 2011; 2 (8): 2383-91.          


Effects of 4-tert-octylphenol on Xenopus tropicalis in a long term exposure., Porter KL, Olmstead AW, Kumsher DM, Dennis WE, Sprando RL, Holcombe GW, Korte JJ, Lindberg-Livingston A, Degitz SJ., Aquat Toxicol. June 1, 2011; 103 (3-4): 159-69.


Rspo3 binds syndecan 4 and induces Wnt/PCP signaling via clathrin-mediated endocytosis to promote morphogenesis., Ohkawara B, Glinka A, Niehrs C., Dev Cell. March 15, 2011; 20 (3): 303-14.                        


APOBEC2, a selective inhibitor of TGFβ signaling, regulates left-right axis specification during early embryogenesis., Vonica A, Rosa A, Arduini BL, Brivanlou AH., Dev Biol. February 1, 2011; 350 (1): 13-23.                


Peptidyl-prolyl cis-trans isomerase xFKBP1B induces ectopic secondary axis and is involved in eye formation during Xenopus embryogenesis., Terukina G, Yoshida Y, Takahashi N., Dev Growth Differ. January 1, 2011; 53 (1): 55-68.


Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis., Terada K, Furukawa T., Dev Biol. November 1, 2010; 347 (1): 180-94.                                                  


The ATP-sensitive K(+)-channel (K(ATP)) controls early left-right patterning in Xenopus and chick embryos., Aw S, Koster JC, Pearson W, Nichols CG, Shi NQ, Carneiro K, Levin M., Dev Biol. October 1, 2010; 346 (1): 39-53.        


Retinal patterning by Pax6-dependent cell adhesion molecules., Rungger-Brändle E, Ripperger JA, Steiner K, Conti A, Stieger A, Soltanieh S, Rungger D., Dev Neurobiol. September 15, 2010; 70 (11): 764-80.                


Developmental regulation of gene expression in the thyroid gland of Xenopus laevis tadpoles., Opitz R, Kloas W., Gen Comp Endocrinol. September 1, 2010; 168 (2): 199-208.


ADAM13 induces cranial neural crest by cleaving class B Ephrins and regulating Wnt signaling., Wei S, Xu G, Bridges LC, Williams P, White JM, DeSimone DW., Dev Cell. August 17, 2010; 19 (2): 345-52.        


A developmental sensitive period for spike timing-dependent plasticity in the retinotectal projection., Tsui J, Schwartz N, Ruthazer ES., Front Synaptic Neurosci. June 10, 2010; 2 13.            


The BMP pathway acts to directly regulate Tbx20 in the developing heart., Mandel EM, Kaltenbrun E, Callis TE, Zeng XX, Marques SR, Yelon D, Wang DZ, Conlon FL., Development. June 1, 2010; 137 (11): 1919-29.                  


FMR1/FXR1 and the miRNA pathway are required for eye and neural crest development., Gessert S, Bugner V, Tecza A, Pinker M, Kühl M., Dev Biol. May 1, 2010; 341 (1): 222-35.                                                              


Claudin-like protein 24 interacts with the VEGFR-2 and VEGFR-3 pathways and regulates lymphatic vessel development., Saharinen P, Helotera H, Miettinen J, Norrmen C, D'Amico G, Jeltsch M, Langenberg T, Vandevelde W, Ny A, Dewerchin M, Carmeliet P, Alitalo K., Genes Dev. May 1, 2010; 24 (9): 875-80.    


Xenopus Bsx links daily cell cycle rhythms and pineal photoreceptor fate., D'Autilia S, Broccoli V, Barsacchi G, Andreazzoli M., Proc Natl Acad Sci U S A. April 6, 2010; 107 (14): 6352-7.          


Fadrozole and finasteride exposures modulate sex steroid- and thyroid hormone-related gene expression in Silurana (Xenopus) tropicalis early larval development., Langlois VS, Duarte-Guterman P, Ing S, Pauli BD, Cooke GM, Trudeau VL., Gen Comp Endocrinol. April 1, 2010; 166 (2): 417-27.


Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut., Chung MI, Nascone-Yoder NM, Grover SA, Drysdale TA, Wallingford JB., Development. April 1, 2010; 137 (8): 1339-49.              


Analysis of SDF-1/CXCR4 signaling in primordial germ cell migration and survival or differentiation in Xenopus laevis., Takeuchi T, Tanigawa Y, Minamide R, Ikenishi K, Komiya T., Mech Dev. January 1, 2010; 127 (1-2): 146-58.      


Thyroid disruption by technical decabromodiphenyl ether (DE-83R) at low concentrations in Xenopus laevis., Qin X, Xia X, Yang Z, Yan S, Zhao Y, Wei R, Li Y, Tian M, Zhao X, Qin Z, Xu X., J Environ Sci (China). January 1, 2010; 22 (5): 744-51.


Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord., Elliott KL, Fritzsch B., Int J Dev Biol. January 1, 2010; 54 (10): 1443-51.          


Morphogenesis of the primitive gut tube is generated by Rho/ROCK/myosin II-mediated endoderm rearrangements., Reed RA, Womble MA, Dush MK, Tull RR, Bloom SK, Morckel AR, Devlin EW, Nascone-Yoder NM., Dev Dyn. December 1, 2009; 238 (12): 3111-25.        


Neural ectoderm-secreted FGF initiates the expression of Nkx2.5 in cardiac progenitors via a p38 MAPK/CREB pathway., Keren-Politansky A, Keren A, Bengal E., Dev Biol. November 15, 2009; 335 (2): 374-84.            

Page(s): 1 2 3 Next