Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3411) Expression Attributions Wiki
XB-ANAT-297

Papers associated with ventral

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 57 58 59 60 61 62 63 64 65 66 67 68 69 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Pattern regulation in defect embryos of Xenopus laevis., Kageura H., Dev Biol. February 1, 1984; 101 (2): 410-5.


[Kinetics of contact polarization of cells in induced tissues in amphibian embryos]., Petrov KV., Ontogenez. January 1, 1984; 15 (6): 643-8.


[Spatial-temporal patterns of the cell cycles in embryos of the clawed toad during gastrulation and neurulation]., Hissam J., Ontogenez. January 1, 1984; 15 (4): 391-8.


Influence of clinostat rotation on fertilized amphibian egg pattern specification., Neff AW., Physiologist. January 1, 1984; 27 (6 Suppl): S139-40.


Cytoskeleton and gravity at work in the establishment of dorso-ventral polarity in the egg of Xenopus laevis., Ubbels GA., Adv Space Res. January 1, 1984; 4 (12): 9-18.


The influence of gravity on the process of development of animal systems., Malacinski GM., Adv Space Res. January 1, 1984; 4 (12): 315-23.


Cerebellar connections in Xenopus laevis. An HRP study., Gonzalez A., Anat Embryol (Berl). January 1, 1984; 169 (2): 167-76.


Post-metamorphic retinal growth in Xenopus., Straznicky C., Anat Embryol (Berl). January 1, 1984; 169 (1): 103-9.


Regional distribution of polyadenylated mRNA in Xenopus laevis embryos., De Bernardi F., Exp Cell Biol. January 1, 1984; 52 (5): 333-8.


Calcium requirement for alpha-MSH action on melanophores: studies with forskolin., de Graan PN., J Recept Res. January 1, 1984; 4 (1-6): 521-36.


Appearance and Distribution of RNA-Rich Cytoplasms in the Embryo of Xenopus laevis during Early Development: (germinal vesicle material/dorsal yolk-free cytoplasm/blastulation/mesoderm formation/Xenopus laevis)., Imoh H., Dev Growth Differ. January 1, 1984; 26 (2): 167-176.


Dorsalization and neural induction: properties of the organizer in Xenopus laevis., Smith JC., J Embryol Exp Morphol. December 1, 1983; 78 299-317.


Cell lineage and the induction of second nervous systems in amphibian development., Gimlich RL., Nature. December 1, 1983; 306 (5942): 471-3.


Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis., Kau CL., J Immunol. November 1, 1983; 131 (5): 2262-6.


A new in vitro melanophore bioassay for MSH using tail-fins of Xenopus tadpoles., de Graan PN., Mol Cell Endocrinol. October 1, 1983; 32 (2-3): 271-84.


Aberrant retinotectal projection induced by larval unilateral enucleation in Xenopus., Straznicky C., Neurosci Lett. August 19, 1983; 39 (1): 5-10.


Compartmental relationships between anuran primary spinal motoneurons and somitic muscle fibers that they first innervate., Moody SA., J Neurosci. August 1, 1983; 3 (8): 1670-82.


Evidence for specific feedback signals underlying pattern control during vertebrate embryogenesis., Cooke J., J Embryol Exp Morphol. August 1, 1983; 76 95-114.


A study of the growth cones of developing embryonic sensory neurites., Roberts A., J Embryol Exp Morphol. June 1, 1983; 75 31-47.


Further observations on the distribution and properties of teleost melanin concentrating hormone., Baker BI., Gen Comp Endocrinol. June 1, 1983; 50 (3): 423-31.


Melanophore differentiation in Xenopus laevis, with special reference to dorsoventral pigment pattern formation., Ohsugi K., J Embryol Exp Morphol. June 1, 1983; 75 141-50.


Clonal organization of the central nervous system of the frog. III. Clones stemming from individual blastomeres of the 128-, 256-, and 512-cell stages., Jacobson M., J Neurosci. May 1, 1983; 3 (5): 1019-38.


The visuotectal projections made by Xenopus 'pie slice' compound eyes., Willshaw DJ., J Embryol Exp Morphol. April 1, 1983; 74 29-45.


Pattern regulation in isolated halves and blastomeres of early Xenopus laevis., Kageura H., J Embryol Exp Morphol. April 1, 1983; 74 221-34.


Pathways of Xenopus optic fibres regenerating from normal and compound eyes under various conditions., Gaze RM., J Embryol Exp Morphol. February 1, 1983; 73 17-38.


Order in the initial retinotectal map in Xenopus: a new technique for labelling growing nerve fibres., Holt CE., Nature. January 13, 1983; 301 (5896): 150-2.


Two transitions of haemoglobin expression in Xenopus: from embryonic to larval and from larval to adult., Kobel HR., Differentiation. January 1, 1983; 24 (1): 24-6.


Development of the optic nerve in Xenopus laevis. I. Early development and organization., Cima C., J Embryol Exp Morphol. December 1, 1982; 72 225-49.


The retinotectal fibre pathways from normal and compound eyes in Xenopus., Fawcett JW., J Embryol Exp Morphol. December 1, 1982; 72 19-37.


Activity of myotomal motoneurons during fictive swimming in frog embryos., Soffe SR., J Neurophysiol. December 1, 1982; 48 (6): 1274-8.


The regional distribution of poly (A) and total RNA concentrations during early Xenopus development., Phillips CR., J Exp Zool. November 1, 1982; 223 (3): 265-75.


The central projections of lateral line and cutaneous sensory fibres (VII and X) in Xenopus laevis., Lowe DA., Proc R Soc Lond B Biol Sci. October 22, 1982; 216 (1204): 279-97.


Assembly, glycosylation, and secretion of the oligomeric rat prostatic binding protein in Xenopus oocytes., Mous JM., J Biol Chem. October 10, 1982; 257 (19): 11822-8.


A scanning electron microscope study of the development of a peripheral sensory neurite network., Roberts A., J Embryol Exp Morphol. June 1, 1982; 69 237-50.


Calcium requirement for alpha-MSH action on tail-fin melanophores of xenopus tadpoles., de Graan PN., Mol Cell Endocrinol. May 1, 1982; 26 (3): 315-26.


Experiments on the central pattern generator for swimming in amphibian embryos., Kahn JA., Philos Trans R Soc Lond B Biol Sci. January 27, 1982; 296 (1081): 229-43.


On the development of the spinal cord of the clawed frog, Xenopus laevis. II. Experimental analysis of differentiation and migration., Thors F., Anat Embryol (Berl). January 1, 1982; 164 (3): 443-54.


Polyadenylated mRNAs from various developmental stages of Xenopus laevis. Role of 26 S mRNA., De Bernardi F., Exp Cell Biol. January 1, 1982; 50 (5): 281-90.


Co-existence of thyrotrophin releasing hormone and 5-hydroxytryptamine in the skin of Xenopus laevis., Bennett GW., Comp Biochem Physiol C Comp Pharmacol. January 1, 1982; 72 (2): 257-61.


The effect of folates on the reflex activity in the isolated hemisected frog spinal cord., Loots JM., J Neural Transm. January 1, 1982; 54 (3-4): 239-49.


Cerebrospinal fluid-contacting neurons and other somatostatin-immunoreactive perikarya in brains of tadpoles of Xenopus laevis., Blähser S., Cell Tissue Res. January 1, 1982; 224 (3): 693-7.


Interactions between compound and normal eye projections in dually innervated tectum: a study of optic nerve regeneration in Xenopus., Straznicky C., J Embryol Exp Morphol. December 1, 1981; 66 159-74.


Axonal guidance during development of the optic nerve: the role of pigmented epithelia and other extrinsic factors., Silver J., J Comp Neurol. November 10, 1981; 202 (4): 521-38.


Development of axosomatic synapses of the Xenopus spinal cord with special reference to subsurface cisterns and C-type synapses., Watanabe H., J Comp Neurol. August 10, 1981; 200 (3): 323-8.


A reinvestigation of the role of the grey crescent in axis formation in xenopus laevis., Gerhart J., Nature. August 6, 1981; 292 (5823): 511-6.


Rohon-Beard neurons arise from a substitute ancestral cell after removal of the cell from which they normally arise in the 16-cell frog embryo., Jacobson M., J Neurosci. August 1, 1981; 1 (8): 923-7.


Somitogenesis in the amphibian Xenopus laevis: scanning electron microscopic analysis of intrasomitic cellular arrangements during somite rotation., Youn BW., J Embryol Exp Morphol. August 1, 1981; 64 23-43.


An ultrastructural examination of early ventral root formation in amphibia., Nordlander RH., J Comp Neurol. July 10, 1981; 199 (4): 535-51.


Locations of androgen-concentrating cells in the brain of Xenopus laevis: autoradiography with 3H-dihydrotestosterone., Kelley DB., J Comp Neurol. June 20, 1981; 199 (2): 221-31.


The development of the retinotectal projections from compound eyes in Xenopus., Straznicky C., J Embryol Exp Morphol. April 1, 1981; 62 13-35.

???pagination.result.page??? ???pagination.result.prev??? 57 58 59 60 61 62 63 64 65 66 67 68 69 ???pagination.result.next???