Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3411) Expression Attributions Wiki
XB-ANAT-297

Papers associated with ventral

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers., Krotoski DM., Dev Biol. May 1, 1988; 127 (1): 119-32.


The development of acetylcholinesterase activity in the embryonic nervous system of the frog, Xenopus laevis., Moody SA., Dev Biol. April 1, 1988; 467 (2): 225-32.


Dorsal and ventral cells of cleavage-stage Xenopus embryos show the same ability to induce notochord and somite formation., Pierce KE., Dev Biol. April 1, 1988; 126 (2): 228-32.


Cellular determination in the Xenopus retina is independent of lineage and birth date., Holt CE., Neuron. March 1, 1988; 1 (1): 15-26.


A developmental and ultrastructural study of the optic chiasma in Xenopus., Wilson MA., Development. March 1, 1988; 102 (3): 537-53.


Reinvestigation of the role of the optic vesicle in embryonic lens induction., Grainger RM., Development. March 1, 1988; 102 (3): 517-26.


Dorsal roots are absent from the tail of larval Xenopus., Nordlander RH., Dev Biol. February 9, 1988; 440 (2): 391-5.


Induction of mesodermal tissues by acidic and basic heparin binding growth factors., Grunz H., Cell Differ. February 1, 1988; 22 (3): 183-9.


The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence., Cooke J., Development. January 1, 1988; 102 (1): 85-99.          


Somitomeres: mesodermal segments of vertebrate embryos., Jacobson AG., Development. January 1, 1988; 104 Suppl 209-20.  


Specificity and retinotectal projections of quarter-eye fragments in Xenopus laevis., Brändle K., Acta Biol Hung. January 1, 1988; 39 (2-3): 191-5.


The distribution of tenascin coincides with pathways of neural crest cell migration., Mackie EJ., Development. January 1, 1988; 102 (1): 237-50.              


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J., Development. December 1, 1987; 101 (4): 893-908.            


cDNA cloning and complete sequence of porcine choline acetyltransferase: in vitro translation of the corresponding RNA yields an active protein., Berrard S., Proc Natl Acad Sci U S A. December 1, 1987; 84 (24): 9280-4.


The development of an assay to detect mRNAs that affect early development., Woodland HR., Development. December 1, 1987; 101 (4): 925-30.


The morphology and distribution of 'Kolmer-Agduhr cells', a class of cerebrospinal-fluid-contacting neurons revealed in the frog embryo spinal cord by GABA immunocytochemistry., Dale N., Proc R Soc Lond B Biol Sci. November 23, 1987; 232 (1267): 193-203.


Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy., Sadaghiani B., Dev Biol. November 1, 1987; 124 (1): 91-110.


Inductive interactions in the spatial and temporal restriction of lens-forming potential in embryonic ectoderm of Xenopus laevis., Henry JJ., Dev Biol. November 1, 1987; 124 (1): 200-14.


Factors guiding optic fibers in developing Xenopus retina., Bork T., J Comp Neurol. October 8, 1987; 264 (2): 147-58.


Axonal growth cones in the developing amphibian spinal cord., Nordlander RH., J Comp Neurol. September 22, 1987; 263 (4): 485-96.


Fates of the blastomeres of the 32-cell-stage Xenopus embryo., Moody SA., Dev Biol. August 1, 1987; 122 (2): 300-19.      


Immunocytochemical analysis of proenkephalin-derived peptides in the amphibian hypothalamus and optic tectum., Merchenthaler I., Dev Biol. July 28, 1987; 416 (2): 219-27.    


The early development of neurons with GABA immunoreactivity in the CNS of Xenopus laevis embryos., Roberts A., J Comp Neurol. July 15, 1987; 261 (3): 435-49.


Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos., Klymkowsky MW., Development. July 1, 1987; 100 (3): 543-57.              


Regional specification within the mesoderm of early embryos of Xenopus laevis., Dale L., Development. June 1, 1987; 100 (2): 279-95.


Regional differences of proteins in isolated cells of early embryos of Xenopus laevis., Miyata S., Cell Differ. June 1, 1987; 21 (1): 47-52.


A postsynaptic Mr 58,000 (58K) protein concentrated at acetylcholine receptor-rich sites in Torpedo electroplaques and skeletal muscle., Froehner SC., J Cell Biol. June 1, 1987; 104 (6): 1633-46.  


Cell patterning in pigment-chimeric eyes in Xenopus: germinal transplants and their contributions to growth of the pigmented retinal epithelium., Hunt RK., Proc Natl Acad Sci U S A. May 1, 1987; 84 (10): 3302-6.          


Localization of Xenopus homoeo-box gene transcripts during embryogenesis and in the adult nervous system., Carrasco AE., Dev Biol. May 1, 1987; 121 (1): 69-81.              


Fate map for the 32-cell stage of Xenopus laevis., Dale L., Development. April 1, 1987; 99 (4): 527-51.                


Neurogenesis in the vocalization pathway of Xenopus laevis., Gorlick DL., J Comp Neurol. March 22, 1987; 257 (4): 614-27.


The first cleavage furrow demarcates the dorsal-ventral axis in Xenopus embryos., Klein SL., Dev Biol. March 1, 1987; 120 (1): 299-304.


Fates of the blastomeres of the 16-cell stage Xenopus embryo., Moody SA., Dev Biol. February 1, 1987; 119 (2): 560-78.        


The midblastula cell cycle transition and the character of mesoderm in u.v.-induced nonaxial Xenopus development., Cooke J., Development. February 1, 1987; 99 (2): 197-210.              


Immunocytochemical localization and spatial relation to the adenohypophysis of a somatostatin-like and a corticotropin-releasing factor-like peptide in the brain of four amphibian species., Olivereau M., Cell Tissue Res. February 1, 1987; 247 (2): 317-24.


[Rearrangement of the morphological structure and degradation of the extracellular matrix in amphibian embryos after short-term disruption of cell contacts]., Georgiev PG., Ontogenez. January 1, 1987; 18 (5): 535-40.


Ionic and pharmacological properties of reciprocal inhibition in Xenopus embryo motoneurones., Soffe SR., J Physiol. January 1, 1987; 382 463-73.


Melanophore differentiation in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Pigment Cell Res. January 1, 1987; 1 (3): 197-201.


The distribution of motoneurons supplying hind limb muscles in the clawed toad, Xenopus laevis., Hulshof JB., Acta Morphol Neerl Scand. January 1, 1987; 25 (1): 1-16.


The trochlear nerve of amphibians and its relation to proprioceptive fibers: a qualitative and quantitative HRP study., Fritzsch B., Anat Embryol (Berl). January 1, 1987; 177 (2): 105-14.


Synthesis of catalytically active choline acetyltransferase in Xenopus oocytes injected with messenger RNA from rat central nervous system., Berrard S., Neurosci Lett. December 3, 1986; 72 (1): 93-8.


The development of the static vestibulo-ocular reflex in the southern clawed toad, Xenopus laevis. III. Chronic hemilabyrinthectomized tadpoles., Rayer B., J Comp Physiol A. December 1, 1986; 159 (6): 887-95.


The development of the static vestibulo-ocular reflex in the southern clawed toad, Xenopus laevis. I. Intact animals., Horn E., J Comp Physiol A. December 1, 1986; 159 (6): 869-78.


Control of neuron shape during development and regeneration., Cohen MJ., Neurochem Pathol. December 1, 1986; 5 (3): 331-43.


Pigment cell pattern formation in amphibian embryos: a reexamination of the dopa technique., Tucker RP., J Exp Zool. November 1, 1986; 240 (2): 173-82.


Modification of Dorsal-Ventral Polarity in Xenopus laevis Embryos Following Withdrawal of Egg Contents before First Cleavage: (Dorsal-ventral Polarity/Xenopus laevis/Cytoplasmic exudation/Pricking)., Wakahara M., Dev Growth Differ. November 1, 1986; 28 (6): 543-554.


Prospective Neural Areas and Their Morphogenetic Movements during Neural Plate Formation of Xenopus Embryos. I. Development of Vegetal Half Embryos and Chimera Embryos: (developmental fates/cell marker, quinacrine/Xenopus embryo)., Suzuki AS., Dev Growth Differ. November 1, 1986; 28 (6): 519-529.


Organisation of Xenopus egg cytoplasm: response to simulated microgravity., Smith RC., J Exp Zool. September 1, 1986; 239 (3): 365-78.


The inducing capacity of the presumptive endoderm of Xenopus laevis studied by transfilter experiments., Grunz H., Rouxs Arch Dev Biol. September 1, 1986; 195 (7): 467-473.


Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos., Jacobson M., Dev Biol. August 1, 1986; 116 (2): 524-31.            

???pagination.result.page??? ???pagination.result.prev??? 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 ???pagination.result.next???