Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3411) Expression Attributions Wiki
XB-ANAT-297

Papers associated with ventral

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The morphological characterization and distribution of displaced ganglion cells in the anuran retina., Tóth P., Vis Neurosci. December 1, 1989; 3 (6): 551-61.


The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT., Dev Biol. November 1, 1989; 136 (1): 104-17.                  


The development of the Xenopus retinofugal pathway: optic fibers join a pre-existing tract., Easter SS., Development. November 1, 1989; 107 (3): 553-73.


Ontogeny and tissue distribution of leukocyte-common antigen bearing cells during early development of Xenopus laevis., Ohinata H., Development. November 1, 1989; 107 (3): 445-52.              


Microtubular packing varies along the course of motor and sensory axons: possible regulation of microtubules by environmental cues., Saitua F., Neurosci Lett. October 9, 1989; 104 (3): 249-52.


An aberrant retinal pathway and visual centers in Xenopus tadpoles share a common cell surface molecule, A5 antigen., Fujisawa H., Dev Biol. October 1, 1989; 135 (2): 231-40.                


Mesoderm-inducing factors and Spemann's organiser phenomenon in amphibian development., Cooke J., Development. October 1, 1989; 107 (2): 229-41.


Neurons expressing thyrotropin-releasing hormone-like messenger ribonucleic acid are widely distributed in Xenopus laevis brain., Zoeller RT., Gen Comp Endocrinol. October 1, 1989; 76 (1): 139-46.      


Expression cloning and regulation of steroid 5 alpha-reductase, an enzyme essential for male sexual differentiation., Andersson S., J Biol Chem. September 25, 1989; 264 (27): 16249-55.


The Influence of Magnesium Ions on the NMDA Mediated Responses of Ventral Rhythmic Neurons in the Spinal Cord of Xenopus Embryos., Soffe SR., Eur J Neurosci. September 1, 1989; 1 (5): 507-515.


A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip., Holt CE., J Neurosci. September 1, 1989; 9 (9): 3123-45.                                


The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo., Messenger NJ., Development. September 1, 1989; 107 (1): 43-54.                      


Localization of intracellular proteins at acetylcholine receptor clusters induced by electric fields in Xenopus muscle cells., Rochlin MW., J Cell Sci. September 1, 1989; 94 ( Pt 1) 73-83.            


Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres., Moody SA., J Neurosci. August 1, 1989; 9 (8): 2919-30.


Experimental reversal of the normal dorsal-ventral timing of blastopore formation does not reverse axis polarity in Xenopus laevis embryos., Black SD., Dev Biol. August 1, 1989; 134 (2): 376-81.


Hyperdorsoanterior embryos from Xenopus eggs treated with D2O., Scharf SR., Dev Biol. July 1, 1989; 134 (1): 175-88.


Lithium changes the ectodermal fate of individual frog blastomeres because it causes ectopic neural plate formation., Klein SL., Development. July 1, 1989; 106 (3): 599-610.


Specification and Establishment of Dorsal-Ventral Polarity in Eggs and Embryos of Xenopus laevis: (body plan specification/dorsal-ventral polarity/Xenopus laevis/"antero-dorsal structure-forming activity")., Wakahara M., Dev Growth Differ. June 1, 1989; 31 (3): 197-207.


Signals from the dorsal blastopore lip region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation in Xenopus laevis., Savage R., Dev Biol. May 1, 1989; 133 (1): 157-68.


Bimodal and graded expression of the Xenopus homeobox gene Xhox3 during embryonic development., Ruiz i Altaba A., Development. May 1, 1989; 106 (1): 173-83.                  


XlHbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm., Wright CV., Development. April 1, 1989; 105 (4): 787-94.          


Marchi-positive myelinoid bodies at the transition between the central and the peripheral nervous system in some vertebrates., Corneliuson O., J Anat. April 1, 1989; 163 17-31.


Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog., Busa WB., Dev Biol. April 1, 1989; 132 (2): 315-24.


Dorsalization of mesoderm induction by lithium., Kao KR., Dev Biol. March 1, 1989; 132 (1): 81-90.


The relationship between talin and acetylcholine receptor clusters in Xenopus muscle cells., Rochlin MW., J Cell Sci. March 1, 1989; 92 ( Pt 3) 461-72.


Experimental analysis of ventral blood island hematopoiesis in Xenopus embryonic chimeras., Smith PB., Dev Biol. February 1, 1989; 131 (2): 302-12.


[The spatio-temporal distribution of single-stranded breaks in nuclear DNA in sections of clawed toad embryos during gastrulation and neurulation]., Zaraĭskiĭ AG., Ontogenez. January 1, 1989; 20 (5): 471-7.


Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor., Fukuzawa T., Pigment Cell Res. January 1, 1989; 2 (3): 171-81.


A step in embryonic axis specification in Xenopus laevis is simulated by cytoplasmic displacements elicited by gravity and centrifugal force., Black SD., Adv Space Res. January 1, 1989; 9 (11): 159-68.


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


Embryonic development of Xenopus studied in a cell culture system with tissue-specific monoclonal antibodies., Mitani S., Development. January 1, 1989; 105 (1): 53-9.        


Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation., van Mier P., Neuroscience. January 1, 1989; 32 (1): 113-26.


A gradient of homeodomain protein in developing forelimbs of Xenopus and mouse embryos., Oliver G., Cell. December 23, 1988; 55 (6): 1017-24.        


Mesoderm induction in the future tail region of Xenopus., Woodland HR., Rouxs Arch Dev Biol. December 1, 1988; 197 (7): 441-446.


Gene expression in the embryonic nervous system of Xenopus laevis., Richter K., Proc Natl Acad Sci U S A. November 1, 1988; 85 (21): 8086-90.      


Expression of Epi 1, an epidermis-specific marker in Xenopus laevis embryos, is specified prior to gastrulation., London C., Dev Biol. October 1, 1988; 129 (2): 380-9.              


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG., Dev Biol. October 1, 1988; 471 (2): 207-24.                    


A ventrally localized inhibitor of melanization in Xenopus laevis skin., Fukuzawa T., Dev Biol. September 1, 1988; 129 (1): 25-36.


Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis., Rosa F., Dev Biol. September 1, 1988; 129 (1): 114-23.            


Patterns of junctional communication during development of the early amphibian embryo., Guthrie S., Development. August 1, 1988; 103 (4): 769-83.


The distribution of fibronectin and tenascin along migratory pathways of the neural crest in the trunk of amphibian embryos., Epperlein HH., Development. August 1, 1988; 103 (4): 743-56.                  


Prospective Neural Areas and their Morphogenetic Movements during Neural Plate Formation in the Xenopus Embryo. II. Disposition of Transplanted Ectoderm Pieces of X. borealis Animal Cap in Prospective Neural Areas of Albino X. laevis gastrulae.: (developmental fate/neural plate area/Xenopus embryo/chimera/quinacrine)., Suzuki AS., Dev Growth Differ. August 1, 1988; 30 (4): 391-400.


A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis., Elinson RP., Dev Biol. July 1, 1988; 128 (1): 185-97.


Inductive effects of fibroblast growth factor and lithium ion on Xenopus blastula ectoderm., Slack JM., Development. July 1, 1988; 103 (3): 581-90.


Development and characterization of commissural interneurones in the spinal cord of Xenopus laevis embryos revealed by antibodies to glycine., Roberts A., Development. July 1, 1988; 103 (3): 447-61.


Patterns of N-CAM expression during myogenesis in Xenopus laevis., Kay BK., Development. July 1, 1988; 103 (3): 463-71.            


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


Positional variations in germinal cell growth in pigment-chimeric eyes of Xenopus: posterior half of the developing eye studied in genetic chimerae and in computer simulations., Hunt RK., Proc Natl Acad Sci U S A. May 1, 1988; 85 (10): 3459-63.


The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR., Dev Biol. May 1, 1988; 127 (1): 64-77.                      


Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis., Keller R., Development. May 1, 1988; 103 (1): 193-209.

???pagination.result.page??? ???pagination.result.prev??? 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 ???pagination.result.next???