Results 1 - 50 of 255 results
Activation of a T-box- Otx2- Gsc gene network independent of TBP and TBP-related factors. , Gazdag E, Jacobi UG, van Kruijsbergen I, Weeks DL , Veenstra GJ ., Development. April 15, 2016; 143 (8): 1340-50.
E-cadherin is required for cranial neural crest migration in Xenopus laevis. , Huang C, Kratzer MC, Wedlich D , Kashef J ., Dev Biol. March 15, 2016; 411 (2): 159-171.
Identification of genes expressed in the migrating primitive myeloid lineage of Xenopus laevis. , Agricola ZN, Jagpal AK, Allbee AW, Prewitt AR, Shifley ET , Rankin SA , Rankin SA , Zorn AM , Kenny AP ., Dev Dyn. January 1, 2016; 245 (1): 47-55.
Mechanical strain determines the axis of planar polarity in ciliated epithelia. , Chien YH, Keller R , Kintner C , Shook DR ., Curr Biol. November 2, 2015; 25 (21): 2774-2784.
Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain. , Ware M, Dupé V, Schubert FR., Dev Dyn. October 1, 2015; 244 (10): 1202-14.
A thioredoxin fold protein Sh3bgr regulates Enah and is necessary for proper sarcomere formation. , Jang DG, Sim HJ, Song EK, Medina-Ruiz S, Seo JK , Park TJ., Dev Biol. September 1, 2015; 405 (1): 1-9.
TGF-β Signaling Regulates the Differentiation of Motile Cilia. , Tözser J, Earwood R, Kato A, Brown J , Tanaka K, Didier R, Megraw TL, Blum M , Kato Y ., Cell Rep. May 19, 2015; 11 (7): 1000-7.
Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation. , Zhang X, Cheong SM, Amado NG, Reis AH, MacDonald BT, Zebisch M, Jones EY, Abreu JG , He X ., Dev Cell. March 23, 2015; 32 (6): 719-30.
The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus. , Griffin JN, Sondalle SB, Del Viso F, Baserga SJ, Khokha MK ., PLoS Genet. March 10, 2015; 11 (3): e1005018.
The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform. , Dichmann DS , Walentek P , Harland RM ., Cell Rep. February 3, 2015; 10 (4): 527-36.
Aminolevulinate synthase 2 mediates erythrocyte differentiation by regulating larval globin expression during Xenopus primary hematopoiesis. , Ogawa-Otomo A, Kurisaki A, Ito Y ., Biochem Biophys Res Commun. January 2, 2015; 456 (1): 476-81.
Comparative expression analysis of pfdn6a and tcp1α during Xenopus development. , Marracci S , Martini D, Giannaccini M, Giudetti G, Dente L , Andreazzoli M ., Int J Dev Biol. January 1, 2015; 59 (4-6): 235-40.
Developmental expression of the N- myc downstream regulated gene (Ndrg) family during Xenopus tropicalis embryogenesis. , Zhong C, Zhou YK, Yang SS, Zhao JF, Zhu XL, Chen HH, Chen PC, Huang LQ, Huang X ., Int J Dev Biol. January 1, 2015; 59 (10-12): 511-7.
Early stages of induction of anterior head ectodermal properties in Xenopus embryos are mediated by transcriptional cofactor ldb1. , Plautz CZ, Zirkle BE, Deshotel MJ, Grainger RM ., Dev Dyn. December 1, 2014; 243 (12): 1606-18.
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. , Nordin K, LaBonne C ., Dev Cell. November 10, 2014; 31 (3): 374-382.
Embryological manipulations in the developing Xenopus inner ear reveal an intrinsic role for Wnt signaling in dorsal- ventral patterning. , Forristall CA , Stellabotte F , Castillo A, Collazo A ., Dev Dyn. October 1, 2014; 243 (10): 1262-74.
Retinoic acid induced-1 ( Rai1) regulates craniofacial and brain development in Xenopus. , Tahir R , Kennedy A , Elsea SH, Dickinson AJ ., Mech Dev. August 1, 2014; 133 91-104.
Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis. , Ramsbottom SA, Maguire RJ , Fellgett SW, Pownall ME ., Dev Biol. July 15, 2014; 391 (2): 207-18.
RFX7 is required for the formation of cilia in the neural tube. , Manojlovic Z, Earwood R, Kato A, Stefanovic B, Kato Y ., Mech Dev. May 1, 2014; 132 28-37.
Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate. , Tereshina MB, Ermakova GV, Ivanova AS, Zaraisky AG ., Biol Open. March 15, 2014; 3 (3): 192-203.
Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT). , Amin NM , Greco TM, Kuchenbrod LM , Rigney MM, Chung MI , Wallingford JB , Cristea IM, Conlon FL ., Development. February 1, 2014; 141 (4): 962-73.
Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis. , Hempel A, Kühl SJ ., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.
Cell segregation, mixing, and tissue pattern in the spinal cord of the Xenopus laevis neurula. , Edlund AF, Davidson LA , Keller RE ., Dev Dyn. October 1, 2013; 242 (10): 1134-46.
Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton. , Ioannou A , Santama N, Skourides PA ., Dev Biol. August 15, 2013; 380 (2): 243-58.
MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate. , Mathieu ME, Faucheux C, Saucourt C, Soulet F, Gauthereau X, Fédou S, Trouillas M, Thézé N , Thiébaud P , Boeuf H., Development. August 1, 2013; 140 (16): 3311-22.
Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly. , Soto X , Li J, Lea R, Dubaissi E , Papalopulu N , Amaya E ., Proc Natl Acad Sci U S A. July 2, 2013; 110 (27): 11029-34.
sox4 and sox11 function during Xenopus laevis eye development. , Cizelsky W, Hempel A, Metzig M, Tao S, Hollemann T , Kühl M , Kühl SJ ., PLoS One. July 1, 2013; 8 (7): e69372.
WNK4 is an essential effector of anterior formation in FGF signaling. , Shimizu M, Goto T , Sato A, Shibuya H ., Genes Cells. June 1, 2013; 18 (6): 442-9.
Serotonin has early, cilia-independent roles in Xenopus left- right patterning. , Vandenberg LN , Lemire JM , Levin M ., Dis Model Mech. January 1, 2013; 6 (1): 261-8.
Eif4a3 is required for accurate splicing of the Xenopus laevis ryanodine receptor pre-mRNA. , Haremaki T , Weinstein DC ., Dev Biol. December 1, 2012; 372 (1): 103-10.
SUMOylated SoxE factors recruit Grg4 and function as transcriptional repressors in the neural crest. , Lee PC, Taylor-Jaffe KM, Nordin KM, Prasad MS , Lander RM, LaBonne C ., J Cell Biol. September 3, 2012; 198 (5): 799-813.
Rab11 regulates planar polarity and migratory behavior of multiciliated cells in Xenopus embryonic epidermis. , Kim K, Lake BB, Haremaki T , Weinstein DC , Sokol SY ., Dev Dyn. September 1, 2012; 241 (9): 1385-95.
Ciliary and non-ciliary expression and function of PACRG during vertebrate development. , Thumberger T , Hagenlocher C, Tisler M, Beyer T, Tietze N, Schweickert A , Feistel K , Blum M ., Cilia. August 1, 2012; 1 (1): 13.
Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning. , Steventon B , Mayor R , Streit A., Dev Biol. July 1, 2012; 367 (1): 55-65.
Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. , Della Gaspera B , Armand AS, Sequeira I, Chesneau A, Mazabraud A , Lécolle S, Charbonnier F, Chanoine C ., Dev Dyn. May 1, 2012; 241 (5): 995-1007.
Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest. , Agüero TH, Fernández JP, López GA, Tríbulo C, Aybar MJ ., Dev Biol. April 15, 2012; 364 (2): 99-113.
The signaling protein CD38 is essential for early embryonic development. , Churamani D, Geach TJ , Ramakrishnan L, Prideaux N, Patel S, Dale L ., J Biol Chem. March 2, 2012; 287 (10): 6974-8.
Simple, fast, tissue-specific bacterial artificial chromosome transgenesis in Xenopus. , Fish MB, Nakayama T , Grainger RM ., Genesis. March 1, 2012; 50 (3): 307-15.
Xaml1/ Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus. , Park BY, Hong CS , Weaver JR, Rosocha EM, Saint-Jeannet JP ., Dev Biol. February 1, 2012; 362 (1): 65-75.
Mustn1 is essential for craniofacial chondrogenesis during Xenopus development. , Gersch RP, Kirmizitas A, Sobkow L, Sorrentino G , Thomsen GH , Hadjiargyrou M ., Gene Expr Patterns. January 1, 2012; 145-53.
Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis. , Della Gaspera B , Armand AS, Lecolle S, Charbonnier F, Chanoine C ., PLoS One. January 1, 2012; 7 (12): e52359.
Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells. , Werner ME, Hwang P, Huisman F, Taborek P, Yu CC, Mitchell BJ ., J Cell Biol. October 3, 2011; 195 (1): 19-26.
The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. , Min TH, Kriebel M, Hou S, Pera EM ., Dev Biol. October 1, 2011; 358 (1): 262-76.
V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. , Vandenberg LN , Morrie RD, Adams DS ., Dev Dyn. August 1, 2011; 240 (8): 1889-904.
Xenopus laevis insulin receptor substrate IRS-1 is important for eye development. , Bugner V, Aurhammer T, Kühl M ., Dev Dyn. July 1, 2011; 240 (7): 1705-15.
The spatio-temporal expression of ProSAP/shank family members and their interaction partner LAPSER1 during Xenopus laevis development. , Gessert S, Schmeisser MJ, Tao S, Boeckers TM, Kühl M ., Dev Dyn. June 1, 2011; 240 (6): 1528-36.
Peter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis. , Bugner V, Tecza A, Gessert S, Kühl M ., Development. June 1, 2011; 138 (11): 2369-78.
EBF factors drive expression of multiple classes of target genes governing neuronal development. , Green YS, Vetter ML ., Neural Dev. April 30, 2011; 6 19.
Novel strategy for subretinal delivery in Xenopus. , Gonzalez-Fernandez F, Dann CA, Garlipp MA., Mol Vis. March 23, 2011; 17 2956-69.
APOBEC2, a selective inhibitor of TGFβ signaling, regulates left- right axis specification during early embryogenesis. , Vonica A , Rosa A, Arduini BL, Brivanlou AH ., Dev Biol. February 1, 2011; 350 (1): 13-23.